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ABSTRACT
Convolutional Neural Networks (CNN) have showed success in
achieving translation invariance for many image processing tasks.
The success is largely attributed to the use of local filtering and max-
pooling in the CNN architecture. In this paper, we propose to apply
CNN to speech recognition within the framework of hybrid NN-
HMM model. We propose to use local filtering and max-pooling in
frequency domain to normalize speaker variance to achieve higher
multi-speaker speech recognition performance. In our method, a
pair of local filtering layer and max-pooling layer is added at the
lowest end of neural network (NN) to normalize spectral variations
of speech signals. In our experiments, the proposed CNN archi-
tecture is evaluated in a speaker independent speech recognition
task using the standard TIMIT data sets. Experimental results show
that the proposed CNN method can achieve over 10% relative error
reduction in the core TIMIT test sets when comparing with a regu-
lar NN using the same number of hidden layers and weights. Our
results also show that the best result of the proposed CNN model is
better than previously published results on the same TIMIT test sets
that use a pre-trained deep NN model.

Index Terms— acoustic modeling, neural networks, speech
recognition, local filtering, max-pooling

1. INTRODUCTION

The long term goal for automatic speech recognition (ASR) is to
effectively deal with a wide range of speaking, channel, and envi-
ronmental conditions that human can handle quite well. These types
of acoustic variations have been found to be quite challenging to
the state-of-the-art ASR systems that use Hidden Markov Models
(HMMs) to model the sequential structure of speech signals, where
each HMM state uses a Gaussian Mixture model (GMM) to model
short-time spectral representation of speech signal. Better acous-
tic models should be able to model a variety of acoustic variations in
speech signals more effectively to achieve robustness against various
speaking and environmental conditions. More recently, deep neural
networks have been proposed to replace Gaussian Mixture model
(GMM) as the basic acoustic models for HMM-based speech recog-
nition systems [1]. And it has been demonstrated that NN-based
acoustic models can achieve very competitive recognition perfor-
mance in some very difficult LVCSR tasks [2, 3]. A key advantage of
neural networks is its “distributed representations” of input features
(i.e., many neurons are active simultaneously to represent input fea-
tures) that makes them more efficient than GMMs. This property
allows NNs to model a diversity of speaking styles and background
conditions with much less training data because NN can share sim-
ilar portions of the input space to train some hidden units but keep

other units sensitive to a subset of the input features that are signifi-
cant to recognition.

In this paper we propose to use some concepts developed in Con-
volutional Neural Networks (CNN) literature [4] to explicitly nor-
malize speech spectral features to achieve speaker invariance and
enforce locality of features. CNN has been proven to be successful
in many vision tasks [5] and it has been proposed for time series data
as in [6, 7], where convolution-based filtering is performed along the
time axis. The novelty of this paper is to apply the CNN concepts
in the frequency domain to exploit CNN invariance to small shifts
along the frequency axis through the use of local filtering and max-
pooling. In this way, some acoustic variations can be effectively
normalized and the resultant feature representation may be immune
to speaker variations, colored background and channel noises. Our
experimental results on TIMIT have shown that the proposed CNN
method can achieve over 10% relative error reduction over regular
NNs using the same number of hidden layers and comparable num-
ber of trainable weights under the same hybrid NN-HMM frame-
work.

2. CONVOLUTIONAL NEURAL NETWORK

CNN consists of one or more pairs of convolution and max pool-
ing layers [4]. A convolution layer applies a set of filters that pro-
cess small local parts of the input where these filters are replicated
along the whole input space. A max-pooling layer generates a lower
resolution version of the convolution layer activations by taking the
maximum filter activation from different positions within a specified
window. This adds translation invariance and tolerance to minor dif-
ferences of positions of objects parts. Higher layers use more broad
filters that work on lower resolution inputs to process more complex
parts of the input. Top fully connected layers finally combine inputs
from all positions to do the classification of the overall inputs. This
hierarchical organization generates good results in image processing
tasks [5].

CNN introduces three extra concepts over the simple fully con-
nected feed-forward NN: local filters, max-pooling, and weight shar-
ing. In next section, we will discuss these concepts in details and
consider to apply them to speech signals.

3. APPLYING CNN CONCEPTS TO SPEECH

In this section, we are concerned with applying CNN principles
along the frequency axis of speech signals. The variability along
the time axis is handled by the HMM model and the dependency
between adjacent speech frames is dealt with a long time context



window feeding as an input to the NN as in standard hybrid NN-
HMM models. Each input of NN is a stack of consecutive feature
frames Ot centering at time t, while the target output is the proba-
bility P (s|Ot) of the centered frame belonging to each HMM state
s at time t.

3.1. Locality

Speech signals enjoy some locality characteristics along the fre-
quency axis, which means that different phonemes many have
energy concentrations in different local bands along the frequency
axis. These local energy concentrations become the critical clues
to distinguish different phonemes. For example, voiced phonemes
have a number of formants appearing at different frequencies. As
a result, filters that work on local frequency region will provide
an efficient way to represent these local structures and their com-
binations along the whole frequency axis may be eventually used
to recognize each phone. This strategy is better than a traditional
acoustic model that represents the entire frequency spectrum as a
whole, such as GMM. Another benefit of local filters is the potential
to achieve better robustness against ambient noises especially when
noises are only concentrated in parts of spectrum, where local filters
in relatively cleaner parts of spectrum can still detect speech features
well to compensate ambiguity of noisy parts.

CNN is capable of modeling these local frequency structures by
allowing each node of the so-called convolutional layer to receive
input only from features representing a limited bandwidth (the re-
ceptive field of the node) of the whole speech spectrum. In order
to locally process spectrum, we need to represent speech inputs in
a frequency scale that can be divided into a number of local bands.
Therefore, the standard MFCC features are not suitable here because
of DCT-based decorrelation transform. However, linear spectrum,
Mel-scale spectrum, or filter-bank features are all perfect for local
filtering in our CNN configuration.

Let’s assume speech input to CNN is v that is divided into B
frequency bands as: v = [v1 v2 ... vB ], where vb is the feature
vector representing band b. As shown in figure 1, this feature vector
vb includes speech spectral features, delta and acceleration parame-
ters from local band b of all feature frames within the current con-
text window. Activations of the convolution layer are divided into
K bands where each band contains J filters activations. Let’s as-
sume each band activation is denoted as hk = [hk,1 hk,2 ... hk,J ].
The convolution layer activations can be computed as a convolution-
like operation of each filter on the lower layer bands followed by a
non-linear activation function:

hk,j = θ

 
s−1X
b=1

wb,jv
T
b+k + aj

!
(1)

where θ(x) is the activation function, s is the filter size in the num-
ber of input bands, wb,j is the weight vector representing the bth
component of the jth filter. Note that we have ignored flipping the
filter index in above equation to make notation simple. This con-
volutional layer can be viewed as a standard Neural Network layer,
where all J nodes of the hidden layer are grouped into K bands
and each node receives inputs only from s bands of the lower layer.
Moreover, weights and biases going into the jth node of each band
are shared among different hidden layer bands as shown in figure 1.
Note that this weight sharing scheme is popular in image processing
but it will be modified in section 3.3 to better fit speech signals.
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Fig. 1. Diagram to shown a pair of CNN convolution layer and max-pooling
layers, where weights represented by the same line style are shared among
all convolution layer bands.

3.2. Max Pooling

As discussed above, speech spectrum includes many local structures
and these local structures are distributed over a range of frequency
axis, where each local structure typically appears to center around
one particular frequency that can vary within a limited range. For
example, central frequencies of formants for the same phoneme may
vary within a limited range and they normally differ between differ-
ent speakers and sometimes even between different utterances from
the same speaker. Some models try to remove the variability be-
tween speakers by transforming the speech features of each speaker
into a canonical speaker space [8, 9].

In CNN, this variability problem can be easily solved through
the use of max-pooling, where a max-pooling layer is added on top
of each convolution layer. The max-pooling layer activations are di-
vided into M bands. Each band of the max-pooling layer receives
input from r convolution layer neighbouring bands to generate J val-
ues representing the maximum activations received from the J con-
volution filters within these r bands as shown in figure 1. The max-
pooling layer usually generates a lower resolution version of the con-
volution layer by doing this maximization operation every n bands,
where n is the sub-sampling factor. As a result a smaller number of
bands are obtained that provide a lower frequency resolution features
that contain more useful information that can be further processed by
higher layers in the NN hierarchy.

The activations of themth band of the max-pooling layer are de-
noted as pm = [pm,1 pm,2 ... pm,J ]T . Each activation is computed
as:

pm,j =
r

max
k=1

(hm×n+k,j) (2)

where r is called pooling size. n could be smaller than r to have
some overlap between adjacent pooling bands. Figure 1 shows an
example of pooling layer which has a sub-sampling factor of 2 and
pooling size 3.

3.3. Weight Sharing

Weight sharing is a critical principle in CNN since it helps to re-
duce the total number of trainable parameters. Furthermore, weight
sharing may lead to more efficient training and more effective model
especially when some similar local structures may appear in may
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Fig. 2. CNN with limited weight sharing. The figure shows weights sharing
within convolution layer sections. For example, in the figure W(1) repre-
sents the weights matrix shared between bands h

(1)
1 , h(1)

2 , and h
(1)
3 , where

h
(1)
1 receives input from bands 1-4 in input layer, h(1)

2 receives input from
bands 2-5, and so on.

places in the input space. In a standard CNN, the local filter weights
are tied and shared for all positions within the whole input space,
as in figure 1. In this case, computation of all filters activations can
be simply viewed a convolution of the filter weights and the input
signals. This type of weight sharing works well in image process-
ing. For example, a set of filters that work as edge detectors can
be uniformly applied to the whole image irrelevant of any particular
position.

However, in speech signals the local structures appearing at dif-
ferent frequency bands may behave in a quite different way. There-
fore, it may be better to limit weight sharing only to those local filters
that are close to each other and will be pooled together in the max-
pooling layer. This weight sharing strategy is depicted in figure 2
where one set of filter weights is used for each pooling band. As a
result, we divide the convolution layer into a number of convolution
sections, where all convolution bands in each section are pooled to-
gether into one pooling layer band and are computed by convolving
section filters with a small number of the input layer bands. In this
case, the pooling layer activations are computed as:

pm,j =
r

max
k=1

(h
(m)
k,j ), (3)

with

h
(m)
k,j = θ

 
s−1X
b=1

w
(m)
b,j vT

m×n+b+k + a
(m)
j

!
(4)

Where h(m)
k,j is the activation of the jth filter of themth section of the

convolution layer applied at the kth band position. In this context,
it’s more suitable to call n band shift in the max-pooling layer.

One disadvantage of this weight sharing is that other pooling
layers can not be added on top of it because the filters outputs in dif-
ferent pooling bands are not related. Therefore, this type of weight
sharing is normally used only in the topmost pooling layer.

3.4. Model Structure

The CNN consists of one or more pairs of convolution and max-
pooling layers, where the lowest layers process a small number of

input frequency bands independently to generate higher level rep-
resentation with lower frequency resolution. The number of bands
decreases in higher layers. The input to each convolution layer can
be padded to ensure that the first and last input bands are processed
by a suitable number of filters in the convolution layer. In this work,
each input is padded by adding half of filter size of dummy bands
before and after the first and last bands so that the number of bands
stays the same in both the input and convolution layers. Usually
the top layers in CNN are fully connected just like that of a normal
forward-feeding NN. These fully connected top layers are expected
to combine different local structures extracted in the lower layers for
the final recognition purpose.

When it is used in a hybrid NN-HMM model for speech recog-
nition, posterior probabilities of HMM states are computed using a
top softmax layer. The CNN processes each input speech utterance
by generating all HMM state probabilities for each frame. Then a
Viterbi decoder is used to get the sequence of labels corresponding
to the input utterance as done in [1].

In training stage, CNN is estimated using the standard back-
propagation algorithm to minimize cross entropy of targets and out-
put layer activations. For a max-pooling layer, the error signal is
back-propagated only to the convolution layer node that generates
the maximum activation within the pooled nodes. The training tar-
gets are obtained from forced alignments generated from a trained
HMM model.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Phone recognition experiments are performed on the TIMIT corpus1

to evaluate effectiveness of the proposed CNN models. We use the
462-speaker training set and remove all SA records (i.e., identical
sentences for all speakers in the database) since they could bias the
results. A separate development set of 50 speakers is used for tuning
all of the meta parameters. Results are reported using the 24-speaker
core test set, which has no overlap with the development set.

In feature extraction, speech is analyzed using a 25-ms Ham-
ming window with a 10-ms fixed frame rate. The speech feature
vector is generated by a Fourier-transform-based filter-banks, which
includes 40 coefficients distributed on a mel scale and energy, along
with their first and second temporal derivatives.

All speech data are normalized by averaging over all training
cases so that each coefficient or first derivative or second derivative
all has zero mean and unit variance. We use 183 target class labels
(i.e., 3 states for each one of the 61 phones). After decoding, the
61 phone classes were mapped to a set of 39 classes as in [10] for
scoring. In our experiments, a bi-gram language model over phones,
estimated from the training set, is used in decoding.

For network training, a learning rate annealing and early stop-
ping strategies are utilized as in [1]. The NN input layer includes
a context window of 15 frames. The input of CNN is divided into
40 bands. Each band includes one of the 40 filter-bank coefficients
along the 15 frames context window including their first and second
derivatives. Moreover, all bands of the first convolution layer re-
ceive the energy as an extra input because it is not suitable to treat it
as a frequency band. Moreover the inputs of convolution layers are
padded as described in section 3.4.

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.



4.2. Influence of Pooling

In the first set of our experiments, we first evaluate effect of differ-
ent pooling size n in the CNN configuration. Assume each CNN is
composed of a convolution layer with the limited weight sharing and
filter size of 8 bands, a max-pooling layer with a sub-sampling fac-
tor of 2, and one top fully-connected hidden layer having 1000 nodes
and one additional the softmax top layer to generate state posterior
probabilities. We have tested CNNs with pooling sizes from 1 (no
max-pooling) to 8. For comparison, CNNs are compared with a fully
connected NN having two hidden layers with 1000 nodes each. All
networks used logistic activation functions. The number of filters
per band in the convolution layer is selected to have similar number
of trainable weights as the baseline NN and they range from 97 to 80
filters.

The recognition results are shown in figure 3, which clearly in-
dicate a siginificant and consistent reduction of the error rate as the
pooling size is increased up to 6 bands. In this case, the recognition
error is reduced from 22.57% to 20.1%, which accounts for about
11% relative error reduction. We also note that the use of local fil-
ters without max-pooling only gives a small error reduction about
0.5% absolute.
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Fig. 3. Influence of pooling size on phone error rate. The horizontal axis
represent the pooling size of the CNN.

4.3. Deep Model Performance

In this section, we evaluate a deep CNN that consists of one pair of
convolution and max-pooling layers pair and TWO fully connected
hidden layers. Each of the fully connected hidden layers still has
1000 hidden nodes. The convolution layer has 84 filters per band
and a filter size of 8 bands, and pooling size is set to 6 with limited
weight sharing scheme and a sub-sampling factor of 2. Here, we
compare this CNN model with another NN consisting of three hid-
den layers (each has 1000 hidden nodes) which has a similar number
of trainable weights. As shown in table 1, this CNN model achieves
phone error rate of 20.07% which is significantly better than the 3-
layer NN baseline. Moreover, this result is also better than previ-
ously published results on the same TIMIT core test sets using the
same speech features.

5. CONCLUSION

In this paper, we have proposed to use the CNN principles in fre-
quency domain to normalize acoustic variations for speech recog-
nition. The results have shown that the use of max-pooling signif-
icantly improves recognition performance on the TIMIT data sets.
The best results using CNN are shown to overtake some previously

Table 1. Comparison of our best CNN with 3-hidden-layer NN
as well as other published results in terms of phone error rates on
TIMIT core test set.

Method PER
NN with 3 hidden layers of 1000 nodes 22.95%
CNN with no pre-training (this work) 20.07%
NN with DBN pre-training [1] 20.70%
NN with DBN pre-training and
mcRBM features extraction [11] 20.50%

published results under similar experimental setup, which are ob-
tained by using Deep belief networks as well as a RBM-based pre-
training stage [1].
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