
PB-339
PREPRINT

A Scaled Conjugate Gradient
Algorithm for Fast Supervised

Learning

Martin F. Møller

November 13, 1990

Computer Science Department
University of Aarhus

Denmark

This is a preprint of a paper intended for publication in a journal. Since changes may be made before
publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the permission of the author.

2

A Scaled Conjugate Gradient Algorithm for Fast
Supervised Learning

Martin F. Møller

Computer Science Department

University of Aarhus, Denmark

email: fodslett@daimi.aau.dk

Abstract— A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with

superlinear convergence rate is introduced. The algorithm is based upon a class of

optimization techniques well known in numerical analysis as the Conjugate Gradient

Methods. SCG uses second order information from the neural network but requires only

O(N) memory usage, where N is the number of weights in the network. The performance

of SCG is benchmarked against the performance of the standard backpropagation

algorithm (BP) [13], the conjugate gradient backpropagation (CGB) [6] and the one-step

Broyden-Fletcher-Goldfarb-Shanno memoryless quasi-Newton algorithm (BFGS) [1].

SCG yields a speed-up of at least an order of magnitude relative to BP. The speed-up

depends on the convergence criterion, i.e., the bigger demand for reduction in error the

bigger the speed-up. SCG is fully automated including no user dependent parameters and

avoids a time consuming line-search, which CGB and BFGS uses in each iteration in

order to determine an appropriate step size.

Incorporating problem dependent structural information in the architecture of a neural

network often lowers the overall complexity. The smaller the complexity of the neural

network relative to the problem domain, the bigger the possibility that the weight space

contains long ravines characterized by sharp curvature. While BP is inefficient on these

ravine phenomena, it is shown that SCG handles them effectively.

1 Introduction

1.1 Motivation

Several adaptive learning algorithms for feed-forward neural networks has recently been

discovered [5]. Many of these algorithms are based on the gradient descent algorithm

well known in optimization theory. They usually have a poor convergence rate and

depend on parameters which have to be specified by the user, because no theoretical basis

for choosing them exists. The values of these parameters are often crucial for the success

of the algorithm. An example is the standard backpropagation algorithm [13] which often

3

behaves very badly on large-scale problems and which success depends of the user

dependent parameters learning rate and momentum constant . The aim of this paper is to

develop a supervised learning algorithm that eliminates some of these disadvantages.

From an optimization point of view learning in a neural network is equivalent to

minimizing a global error function, which is a multivariate function that depends on the

weights in the network. This perspective gives some advantages in the development of

effective learning algorithms because the problem of minimizing a function is well known

in other fields of science, such as conventional numerical analysis [17].

Since learning in realistic neural network applications often involves adjustment of

several thousand weights only optimization methods that are applicable to large-scale

problems, are relevant as alternative learning algorithms. The general opinion in the

numerical analysis community is that only one class of optimization methods exists that

are able to handle large-scale problems in an effective way. These methods are often

referred to as the Conjugate Gradient Methods [4], [2], [3], [12]. Several conjugate

gradient algorithms have recently been introduced as learning algorithms in neural

networks [6], [1], [11]. Johansson, Dowla and Goodman describes in detail the theory

of general conjugate gradient methods and how to apply the methods in feed-forward

neural networks. They conclude that their algorithm (CGB)1 is an order of magnitude

faster than the standard backpropagation algorithm (BP) [13] when tested on the parity

problem. Battiti and Masulli has used a variation of the standard conjugate gradient

method, the one-step Broyden-Fletcher-Goldfarb-Shanno memoryless quasi-Newton

algorithm (BFGS), as an alternative learning algorithm. Compared to BP, the algorithm

yields a speed-up of 100-500 relative to the amount of learning iterations used [1].

Unfortunately Battiti and Masulli do not take the calculation complexity per learning

iteration into account when calculating this impressive speed-up. Both CGB and BFGS

raise the calculation complexity per learning iteration considerable, because they have to

perform a line-search in order to determine an appropriate step size. A line-search

involves several calculations2 of either the global error function or the derivative to the

global error function, both of which raise the complexity.

The paper introduces a variation of a conjugate gradient method (Scaled Conjugate

Gradient, SCG), which avoids the line-search per learning iteration by using a

Levenberg-Marquardt approach [2] in order to scale the step size.

1 Johansson, Dowla and Goodman suggest several variations of a standard conjugate gradient algorithm.

The variations are in this paper for convinience referred to as one algorithm named Conjugate Gradient

Backpropagation (CGB) .

2 In average about 3-15 calculations.

4

1.2. Notation

Let an arbitrary feed-forward neural network be given. The weights in the network will

be expressed in vector notation. A weight vector is a vector in the real euclidean space

ℜN, where N is the number of weights and biases in the network. A weight vector will

often be referred to as a point in ℜN or just a point in weight space. Let w be the weight

vector defined by

(1) w = (…, w(l)� � , w
�����
i+1j, …, w (l)

Nlj
, θ(l+1)� , w

�����
ij+1, w

�����
i+1j+1, …)

where w(l)
i j is the weight from unit number i in layer number l to unit number j in layer

number l+1, Nl is the number of units in layer l, and θ(l+1)	 is the bias for unit number j in

layer number l+1. We assume that a global error function E(w) depending on all the

weights and biases is attached to the neural network. E(w) could be the standard least

square function or any other appropriate error function. E(w) can be calculated with one

forward pass and the gradient E'(w) with one backward pass [13]. If we assume that the

number of patterns to be learned is proportional to the number of weights, which is

reasonable according to Hinton [5], the complexity of calculating either E(w) or E'(w) is

O(N2), where N is the number of weights and biases. E'(w) is given by

(2) E'(w) = (…, ∑
p=1

P

dEp

dw
(l)
i j

, ∑
p=1

P

dEp

dw
�����
i+1j

, …, ∑
p=1

P

dEp

dw
(l)
Nlj

, ∑
p=1

P

dEp

dθ(l+1)� , ∑
p=1

P

dEp

dw
�����
ij+1

, …)

where P is the number of patterns presented to the network during training and Ep is the

error associated with pattern p. We are now able to define some of the weight vector

operations needed. The coordinates in a weight vector is referred to by superscript, so

that wi denotes the i's weight in weight vector w. When matrix operations are used a

weight vector w is a column-vector and wT, the transpose of w, will then be a row-

vector. The ordering of the coordinates in the weight vectors are not important as long as

the chosen ordering is consistent through out the implementation.Weight vectors and

scalars are respectively indicated by roman and greek letters.

The weight addition, weight subtraction, weight product and weight division are

defined respectively as

(3) w+y = (w1+y1, ...,wi+yi, …,wN+yN)T

w–y = (w1–y1, ...,wi–yi, …,wN–yN)T

wTy = ∑
j=1

N

iy i

w
σ = ∑

j=1

N
w i

σ

5

The weight length is defined as

(4) |w| = [∑
j=1

N

(wi)2]
1
2

It might also be useful to recall that the error function E(w) in a given point (w+y) in

ℜN can be expressed by the well known Taylor expansion [3],[4]

(5) E(w+y) = E(w)+ E'(w)Ty + 1
2
yTE''(w)y + ...

A NxN matrix A is said to be positive definite if

(6) yTAy > 0 ∀ y ∈ ℜN

Let p1,..,pk be a set of non zero weight vectors in ℜN. The set is said to be a

conjugate system with respect to a non-singular symmetric NxN matrix A if the

following holds [4]

(7) pT
i Apj = 0 (i ≠ j, i = 1,..,k)

The set of points w in ℜN satisfying

(8) w = w1+ α1p1+…+ αkpk, αi∈ ℜ,

where w1 is a point in weight space and p1,..,pk is a subset of a conjugate system, is

called a k-plane or πk [4].

2 Optimization strategy

Most of the optimization methods used to minimize functions are based on the same

strategy. The minimization is a local iterative process in which an approximation to the

function in a neighbourhood of the current point in weight space is minimized. The

approximation is often given by a first or second order Taylor expansion of the function.

The idea of the strategy is illustrated in the pseudo algorithm presented below, which

minimizes the error function E(w) [2].

1. Choose initial weight vector w1 and set k = 1.

2. Determine a search direction pk and a step size αk

 so that E(wk+ αkpk)< E(wk).

3. Update vector: wk+1 = wk + αkpk.

4. If E'(wk)≠0 then set k = k+1 and go to 2

else return wk+1 as the desired minimum.

6

Determining the next current point in this iterative process involves two independent

steps. First a search direction has to be determined, i.e, in what direction in weight space

do we want to go in the search for a new current point. Once the search direction has

been found we have to decide how far to go in the specified search direction, i.e, a step

size has to be determined.
If the search direction pk is set to the negative gradient –E'(w) and the step size αk to a

constant ε, then the algorithm becomes the gradient descent algorithm [3]. In the context

of neural networks this is the BP algorithm without momentum term [13]. Minimization

by gradient descent is based on the linear approximation E(w+y) ≈ E(w)+ E'(w)Ty,

which is the main reason why the algorithm often show poor convergence. Another

reason is that the algorithm uses constant step size, which in many cases are inefficient
������������	�
����	��������������������	�
�
���������
 �"!�#���$������������%�&������	��'�(�'����	��)���(�%���	&*,+-���"�'�������������

an attempt in an ad hoc fashion to force the algorithm to use second order information

from the network. Unfortunately the momentum term is not able to speed up the

algorithm considerable, but causes the algorithm to be even less robust, because of the

inclusion of another user dependent parameter, the momentum constant.

3 The SCG algorithm

The Conjugate Gradient Methods are also based on the above general optimization

strategy, but chooses the search direction and the step size more carefully by using

information from the second order approximation E(w+y) ≈ E(w)+E'(w)Ty + 1
2
yTE''(w)y.

Quadratic functions have some nice properties that general functions not necessarily
have. Denote the quadratic approximation to E in a neighbourhood of a point w by

Eqw(y), so that Eqw(y) is given by

(9) Eqw(y) = E(w) + E'(w)Ty + 1
2
yTE''(w)y

In order to determine minima to Eqw(y) the critical points for Eqw(y) must be found, i.e.,

the points where

(10) E
.

qw(y) = E''(w)y + E'(w) = 0

The critical points are the solution to the linear system defined by (10). If a conjugate

system is available the solution can be simplified considerable [4], [6]. Johansson,
Dowla and Goodman shows in a very understandable way how. Let p1,…, pN be a

conjugate system. Because p1,…, pN form a basis for ℜN, the step from a starting point

y1 to a critical point y* can be expressed as a linear combination of p1,…, pN

7

(11) y* – y1 = ∑
i=1

N

αipi , αi∈ ℜ

Multiplying (11) with pT
j E''(w) and sudstituting E'(w) for – E''(w)y* gives

(12) pT
j (–E'(w) – E''(w)y1) = αjp

T
j E''(w)pj ⇒

αj =
pT

j (–E' �
������ ''(w)y1)

pT
j E''(w)pj

 =
–pT

j E
.

qw(y1)

pT
j E''(w)pj

The critical point y* can be determined in N iterative steps using (11) and (12).

Unfortunately y* is not necessarily a minimum, but can be a saddle point or a maximum.

Only if the Hessian matrix E''(w) is positive definite then Eqw(y) has a unique global

minimum [4]. This can be realized by

(13) Eqw(y) = Eqw(y* + (y – y*))

= E(w) + E'(w)T(y* +(y – y*)) + 1
2
(y* +(y – y*))

TE''(w)(y* +(y – y*))

= E(w) + E'(w)Ty* + E'(w)T(y – y*) + 1
2
yT

E''(w)y + 1
2
yT

E''(w)(y – y)

 + 1
2
 (y – y*)

TE''(w)y* + 1
2
(y – y*)

TE''(w)(y – y*)

=3 Eqw(y*) + (y – y*)
T(E''(w)y* + E'(w)) + 1

2
(y – y*)

TE''(w)(y – y*)

=4 Eqw(y*) + 1
2
(y – y*)

TE''(w)(y – y*)

It follows from (13) that if y* is a minimum then 1
2
(y – y*)

TE''(w)(y – y*) > 0 for every y,

hence E''(w) has to be positive definite. The Hessian E''(w) will in the following if not

told otherwise be assumed to be positive definite.

The intermediate points yk+1 = yk+ αkpk given by the iterative determination of y* are

in fact minima for Eqw(y) restricted to every k-plane πk: y = y1+ α1p1+…+ αkpk [4].

How to determine these points recursively is shown in theorem 1. The proof is omitted.5

Theorem 1 Let p1,…,pN be a conjugate system and y1 a point in weight space. Let the

points y2,…,yN+1 be recursively defined by

yk+1 = yk + αkpk ,

where αk =
µk

δk

, µk = –pT
kE �qw(yk) , δk = pT

kE''(w)pk. Then yk+1 minimizes Eqw restricted

to the k-plane πk given by y1 and p1,…,pk [4].

3 E''(w) is symmetric.
4 E''(w)y* + E'(w) = 0 by (10).

5 A proof for theorem 1 can be found in [4].

8

We are now able to formulate a conjugate gradient algorithm as proposed by [4].
Select an initial weight vector y1 and a conjugate system p1,…,pN. Find successive

minima for Eqw on the planes π1,…,πN using theorem 1, where πk, 1 ≤ k ≤ N, is given

by y = y1+ α1p1+…+ αkpk, αi∈ ℜ. The algorithm assures that the global minimum for

a quadratic function is detected in at most N iterations. If all the eigen values to the

Hessian E''(w) falls into multiple groups with values of the same size, then there is great

possibility that the algorithm terminates in much less than N iterations. Praxis shows that

this is often the case [2].
It is not necessary to know the conjugate weight vectors p1,…,pN in advance, they

can be determined recursively. Initially p1 is set to the steepest descent vector –E
.

qw(y1).

pk+1 is then determined recursively as a linear combination of the current steepest descent

vector –E
.

qw(yk+1) and the previous direction pk [6]. More precisely is pk+1 chosen as the

orthogonal projection of –E
.

qw(yk+1) on the (N–k)-plane πN-k conjugate to πk. Theorem 2

shows without proof how this can be done.6

Theorem 2 Let y1 be a point in weight space and p1 and r1 equal to the steepest descent

vector –E�qw(y1). Define pk+1 recursively by

 pk+1 = rk+1 + βkpk

where rk+1 = –E �qw(yk+1), βk =
|rk+1|2–rk+1rk

pT
krk

 and yk+1 is the point generated in theorem

1. Then pk+1 is the steepest descent vector to Eqw restricted to the (N-k)-plane πN-k

conjugate to πk given by y1 and p1,…,pk [4].

For each iteration the above described algorithm is applied to the quadratic
approximation Eqw of the global error function E in the current point w in weight space.

Because the error function E(w) is non-quadratic the algorithm will not necessarily

converge in N steps. If the algorithm has not converged after N steps, the algorithm is
restarted, i.e., initializing pk+1 to the current steepest descent direction rk+1 [2], [3], [4],

[12]. The first version of the SCG algorithm is

1. Choose initial weight vector w1.

 Set p1 = r1 = –E'(w1), k = 1.

2. Calculate second order information:
sk = E''(wk)pk,

δk = pT
ksk.

3. Calculate step size:

µk = pT
krk,

6 A proof for theorem 2 can be found in [4] and [6].

9

αk =
µk

δk

.

4. Update weight vector:
wk+1 = wk + αkpk,

rk+1 = –E'(wk+1).

5. If k mod N = 0 then restart algorithm: pk+1 = rk+1

 else create new conjugate direction:

βk =
|rk+1|

2–rk+1rk

µk
,

pk+1 = rk+1+ βkpk.

6. If the steepest descent direction rk ≠ 0 then set k = k+1 and go to 2

 else terminate and return wk+1 as the desired minimum.

Several other formulas for βk can be derived [4], [2], [3], [6], but when the conjugate

gradient methods are applied to non-quadratic functions the above formula, called the
Hestenes-Stiefel formula, for βk is considered superior [6]. When the algorithm shows

poor development the formula forces the algortihm to restart because of the following

relation

(14) rk+1 ≈ rk ⇒ βk ≈ 0 ⇒ pk+1 ≈ rk+1

For each iteration the Hessian matrix E''(wk) has to be calculated and stored.

Unfortunately is it not desirable to calculate the Hessian matrix explicitly, because of the

calculation complexity and memory usage involved; actually calculating the Hessian

would demand O(N2) memory usage and O(N3) in calculation complexity. The solution
to the problem is to estimate the E''(wk)pk with

(15) sk = E''(wk)pk ≈
E'(wk+σkpk)–E'(wk)

σk

 , 0 < σk << 1

The calculation complexity and memory usage of sk is respectively O(N2) and O(N),

and the algorithm is now direct applicable to a feed-forward neural network [4].

The algorithm was tested on an appropriate test problem. It failed in almost any case

and converged to a non stationary point. The reason is that the algorithm only works for

functions with positive definite Hessian matrices, and that the quadratic approximations

on which the algorithm works can be very poor when the current point is far from the

desired minimum [4], [3]. The Hessian matrix for the global error function E has shown

to be indefinite in different areas of the weight space, which explaines why the algorithm

fails in the attempt to minimize E. The solution to the problem is to modify the algorithm

so that it prevents the difficulties with the indefinite Hessian matrices. Both the CGB and

the BFGS algorithm solves the problem by using a line-search per iteration in order to

10

determine a better step size. A line-search could also be used in the above algorithm, but

this would like in CGB and BFGS raise the calculation complexity per iteration

considerable. Instead a Levenberg-Marquardt approach was used in modifying the
algorithm [2].7 The idea is to introduce a scalar λk, which is supposed to regulate the

indefiniteness of E''(wk).8 This is done by setting

(16) sk =
E'(wk+σkpk)–E'(wk)

σk

 + λkpk

and for each iteration adjusting λk looking at the sign of δk, which directly reveal if

E''(wk) is not positive definite. If δk ≤ 0 then λk is raised and sk is estimated again. Call

the new sk for
_
sk and the raised λk for

_
λk. Then

_
sk is

(17)
_
sk = sk + (

_
λk – λk)pk

The Levenberg-Marquardt algorithm [2] has to raise λk with a constant factor, whenever

the Hessian is not positive definite, because the algorithm contains no information about
how much λk must be raised. This is however possible when using this approach in the

above algorithm, as the values of δk indirectly reveal how much λk should be raised.

Assume in a given iteration that δk ≤ 0. It is possible to determine how much λk should

be raised in order to get δk > 0.

(18)
_
δk = pT

k
_
sk = pT

k (sk + (
_
λk – λk)pk) = δk + (

_
λk – λk)|pk|

2 > 0 ⇒
_
λk > λk –

δk
� �

k|2

(18) implies that if λk is raised with more than –
δk

� �
k|2

 then
_
δk > 0. The question is with

how much
_
λk should be raised to get an optimal solution. This question can not yet be

answered, but it is clear that
_
λk in some way should depend on λk, δk and |pk|

2. A choice

that has shown to be reasonable is

(19)
_
λk = 2(λk –

δk
� �

k|2
)

7 The Levenberg-Marquardt algorithm is a variation of the standard Newton algorithm.
8 λk is also known as a Lagrange Multiplier [2].

11

This leads to

(20)
_
δk = δk + (

_
λk– λk)|pk|

2 = δk + (2λk – 2
δk

|pk|2
 - λk)|pk|

2 = – δk + λk|pk|
2 > 0

The step size is given by

(21) αk =
µk

δk

 =
µk

� T
ksk

� λk|pk|2

The values of λk directly scale the step size in the way, that the bigger λk, the smaller the

step size, which agrees well with our intuition of the function of λk.

Because λk scales the Hessian matrix in an artificial way, the quadratic approximation

Eqw on which the algorithm works may in some points not be a very good approximation

to E(w). In order to get a good approximation, a mechanism to raise an lower λk even

when the Hessian is positive definite is needed. Define

(22) ∆k =
E(wk)–E(wk+αkpk)

E(wk)–Eqw(αkpk)
 =

2δk[E(wk)–E(wk+αkpk)]

µ2
k

∆k is a measure of how well Eqw(αkpk) approximates E(wk+αkpk) in the sense, that the

closer ∆k is to 1, the better is the approximation. λk is raised and lowered following the

formula [2]

(23) if ∆k > 0.75 then λk = 1
2
 λk

if ∆k < 0.25 then λk = 4λk

The final SCG algorithm is as shown below.

1. Choose weight vector w1 and scalars σ > 0, λ1 > 0 and
_
λ1 = 0.

Set p1 = r1 = –E'(w1), k = 1 and success = true.

2. If success = true then calculate second order information:

σk =
σ

|pk|
,

sk =
E'(wk+σkpk)–E'(wk)

σk

,

δk = pT
ksk.

3. Scale sk:

sk = sk + (λk–
_
λk)pk,

δk = δk+ (λk–
_
λk)|pk|

2.

12

4. If δk ≤ 0 then make the Hessian matrix positive definite:

sk = sk + (λk – 2
δk

� �
k|2

)pk,

_
λk = 2(λk –

δk
� �

k|2
),

δk = – δk + λk|pk|
2, λk =

_
λk.

5. Calculate step size:

µk = pT
krk, αk =

µk

δk

.

6. Calculate the comparison parameter: ∆k =
2δk[E(wk)–E(wk+αkpk)]

µ2
k

.

7. if ∆k ≥ 0 then a successful reduction in error can be made:

wk+1 = wk + αkpk,

rk+1 = –E'(wk+1),
_
λk = 0, success = true.

7a. If k mod N = 0 then restart algorrithm: pk+1 = rk+1

 else create new conjugate direction:

βk =
|rk+1|

2–rk+1rk

µk
,

pk+1 = rk+1+ βkpk.

7b. If ∆k ≥ 0.75 then reduce the scale parameter: λk = 1
2
λk.

else a reduction in error is not possible:
_
λk = λk, success = false.

8. If ∆k< 0.25 then increase the scale parameter: λk = 4λk

9. If the steepest descent direction rk ≠ 0 then set k = k+1 and go to 2

 else terminate and return wk+1 as the desired minimum.

For each iteration there is one call of E(w) and two calls of E'(w), which gives a

calculation complexity per iteration of O(3N2). When the algorithm is implemented this

complexity can be reduced to O(2N2), because the calculation of O(N2) can be built into

one of the calculations of E'(w). In comparison with BP, SCG involves twice as much

calculation work per iteration, since BP has a calculation complexity of O(N2) per

iteration. The calculation complexity of CGB and BFGS is about O(2-15N2) since the
line-search in average involves 2-15 calls of E(w) or E'(w) per iteration [3]. When λk is

zero, SCG is equal to the unmodified conjugate gradient algorithm shown before. Figure

1 illustrates SCG functioning on the logistic map problem, a test problem described later

in detail. Graph A) shows the error development versus learning iteration. The error

decreases monotonic towards zero, which is characteristic for SCG, because an error

increase is not allowed. At several iterations the error is constant for one or two

13

A) B)

0 10 20 30 40 50
0

0,1
0,2

0,3
0,4
0,5
0,6
0,7
0,8

0,9
E

rr
o
r

Iteration
0 10 20 30 40 50

-0,02
0

0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18

S
ca

le
 p

ar
am

et
er

Iteration

Figure 1. SCG functioning on the logistic map problem.

iterations.9 The Hessian matrix has here been not positive definite and λk has been

increased using equation (19). The development of λk is shown in graph B). λk is only

varying between 0 and 25 iterations and is 0 in the rest of the minimization. This reveals,

that E''(w) has been not positive definite only in the beginning of the minimization. This

is not surprising because the closer the current point is to the desired minimum the bigger

is the possibility that E''(w) is positive definite [4]. We observe that whenever equation
(19) is used to increase λk a big reduction in error is archieved.10

4. Test results

4.1 The parity problem

The aim with this test is to compare the performance of SCG with BP and CGB. The

comparison with CGB will be based on the results reported by Johansson, Dowla and

Goodman. SCG and BP were tested on 3, 4, 5, 6 and 7 bit parity problems using 10

different initial weight vectors. Three and four layer neural network architectures was

used for each problem.11 A training set containing all possible input patterns was used,

i.e., 2n patterns. An average of the total calls of E(w) and E'(w) was used in comparing

the performance of the algorithms. The convergence criterion was the same as used by

Johansson, Dowla and Goodman, i.e, the algorithm was terminated when the average

error was less than 10–6. The results are illustrated in table 1. Johansson, Dowla and

Goodman obtained speed-up ranging from 15 to 34 when testing CGB on 3, 4 and 5 bit

9 See iteration 6, 13, 20 and 23.

10 See iteration 7, 16, 21 and 24.

11 3-3-1, 3-3-3-1, 4-4-1, 4-4-4-1, 5-5-1, 5-5-5-1, 6-6-1, 6-6-6-1, 7-7-1 and 7-7-7-1 architectures.

14

parity problems. However, the results are not directly comparable with the results

reported here, because their results are not based on average tests.

3-3-1
3-3-3-1
4-4-1
4-4-4-1
5-5-1
5-5-5-1
6-6-1
6-6-6-1
7-7-1
7-7-7-1

Architecture SCG BP Speed-up

 154
 167
 494
 467
 642
 608
1217
1009
1752
1337

 6394
 3587
 15373
 10899
 18451
 13679
 56341
 18110
 77370
 41846

41.5
21.5
31.1
23.3
28.7
22.5
46.3
17.9
44.2
31.3

Table 1. Results from the parity problem. Average of 10 tests.

It would also be interesting to see how the learning time is scaled by SCG and BP.

According to Hinton the learning time for BP should be approximately O(N3), i.e., the

total number of function calls, each costing O(N2) time, should be approximately O(N).

This depends, however, of the nature of task [5], [15]. Judd shows that in the worst case

it is exponential [7]. Figure 2 illustrates the number of function calls versus the number

of input units for each of the two network architectures using a logarithmic plot. We

observe that the learning time for BP is bounded by O(N2logN) and O(N3) function calls,

while the learning time for SCG is bounded by O(NlogN) and O(N2) function calls. Four

layer networks seems to yield slightly better performance for both algorithms. However,

tests on other problems than the parity problem is needed to confirm these results.

4.2 The logistic map problem

In order to compare SCG with BFGS, SCG was tested on a problem original introduced

by Lapedes and Farber [8], but used by Battiti and Masulli [1] in testing BFGS.

The logistic map is a discrete-time, non-linear dynamical system [1]. The recurrence

relation is

(7) xn+1 = r xn(1 – xn) 0 < xn < 1

According to Battiti and Masulli relation (7) is an ergodic, chaotic system, when r = 4.

They created a 3-layer neural network consisting of one input, five hidden and one output
unit. A sequence of 10 example pairs (xn, xn+1) was generated by the logistic map and

used as a training set. The convergence criterion was set to 0.01, i.e., the network was

said to have converged, when all outputs was within a margin of 0.01 from the

corresponding target outputs. Battiti and Masulli obtained a speed-up of 500 compared to

15

Ε
Ε Ε Ε Ε

ϑ
ϑ ϑ ϑ

ϑ

3 4 5 6 7
1

10

100

1000

10000

100000

1000000

F
un

ct
io

n
ca

lls

Number of inputs

Ε 4 layer (SCG)

ϑ 4 layer (BP)

NlogN

N2

N2logN

N3

Ε
Ε Ε Ε Ε

ϑ
ϑ ϑ

ϑ
ϑ

3 4 5 6 7
1

10

100

1000

10000

100000

1000000

F
un

ct
io

n
ca

lls

Number of inputs

Ε 3 layer (SCG)

ϑ 3 layer (BP)

NlogN

N2

N2logN

N3

Figure 2. Function calls per number of input units for 3 and 4 layer networks on 3, 4, 5, 6 and 7 bit

parity problems. Notice the logarithmic scale.

a variation of BP, called the Bold Driver Method (BD), where the learning rate is raised

or lowered depending on whether the global error is increasing or decreasing [8], [16],

[1]. This speed-up is, however, obtained without taking the calculation complexity per

learning iteration into account.

SCG and BD were tested on a similar example. The convergence criterion was set to

0.1, 0.09, 0.08, …, 0.01. SCG and BD was tested on 10 different initial weight vectors

for each of the 10 criteria.

16

0.10 107 1044 9.8
0.09 126 2293 18.2
0.08 198 9459 47.8
0.07 319 19008 59.6
0.06 438 23518 53.7
0.05 497 30408 61.2
0.04 580 42491 73.3
0.03 683 57093 83.6
0.02 1011 241557 238.9
0.01 4718 2548570 540.2

Criterion SCG BD Speed-up

Table 2. Results from the logistic map problem. Average of 10 tests.

An average of the total calls of E(w) and E'(w) was used in comparing the performance

of the algorithms. The results are illustrated in table 2. At a convergence criterion of 0.01

SCG obtains a speed-up of about 540 which is better than reported by Battiti and Masulli

even though their speed-up not takes the calculation complexity per learning iteration into

account.

Another interesting thing appears from table 1, when we look at the speed-up relative

to the convergence criterion. Figure 3 shows the relation. The speed-up grows linearly

from convergence criteria 0.1 to 0.03, but when the convergence criterion gets small the

speed-up grows almost exponential . This is not surprising, when the main differences

between SCG and BD are considered. BD is an optimization techniques based on first

order information from the neural network. First order algorithms converge slower the

closer they get to the minimum [17].

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1
0

100

200

300

400

500

600

S
pe

ed
-u

p

Convergence criterion

Figure 3. Speed-up versus convergence criterion.

17

It does in fact hold that although they converge to the minimum, they will never reach the

minimum. SCG is based on second order information from the network. Second order

algorithms converge faster the closer they get to the minimum. The smaller the

convergence criterion one demands in a specific neural network application the bigger the

speed-up one gets using SCG.

4.3 The =1 problem

If a neural network has to function in a dynamical environment the structure of the neural

network must reflect the natural geometry or at any rate some informationally significant

dimensions of the problem domain [9], [14]. Mühlenbein concludes in his discussion of

the limitations of multi-layer perceptrons [10], that the backpropagation algorithm is not

able to use such stuctural information. Mühlenbein uses the “=1” boolean function as a

test example. The function determines whether a binary string is a 1-bit string or not. The

=1 problem can be solved using a modular network approach. Smaller, independent

networks are trained to exploit partial knowledge of the problem. These network modules

are then incorporated into larger structures. The composed modular network solves the

=1 problem, given that the smaller networks has learned the partial problems. The

composed network for n = 8 is shown in figure 4. Mühlenbein shows that the network

solves the =1 problem using the weights obtained from training the smaller network

modules. Now knowing that a solution to the =1 problem exist, BP was tested on the

network. It was not able to find a solution, and Mühlenbein conlude, that BP is not able

to use structural information.

In order to confirm Mühlenbeins results and to determine whether SCG is able to find

a solution, BP and SCG were tested using 5 different initial weight vectors and

convergence criterion 0.1. Table 3 shows the result. Surprisingly BP is able to solve the

problem in 3 out of 5 tests, although having major difficulties.

Figure 4. Composed modular network for =1 problem (n = 8) [10].

18

8027 885270
 966 357167
4014 2000000*
 656 240754
1282 2000000*

SCG BP

Table 3. Results from SCG and BP on the =1 problem. * = failed to converge.

It is well known from the optimization literature that gradient descent methods, like BP,

are very inefficient, when the weight space contains long ravines that are characterized by

sharp curvature across the ravine and a gently sloping floor [1], [13].12 The gradient

descent algorithm does not use any information about the curvature in the minimization

process. The conjugate gradient methods, like SCG, can handle the ravine phenomena

more effectively, because they use second order information which characterizes the

curvature. This major difference could explain, why SCG is superior on the =1 problem

and other problems. The composed modular network approach described by Mühlenbein

produces more layers and reduces the overall complexity of the neural network

considerable compared to a general feed-forward neural network. It is our experience that

the smaller the dimension of the weight space relative to the problem domain or the more

layers, the bigger the probability for running into ravine phenomena. Figure 5 which

shows a run with SCG and BP on the =1 problem support this thesis.

0

10
0

20
0

30
0

40
0

50
0

60
0

0

0,5

1

1,5

2

2,5

E
rr

or
 (

S
C

G
)

Iteration

0

3
,6

0
E

+
4

7
,2

0
E

+
4

1
,0

8
E

+
5

1
,4

4
E

+
5

1
,8

0
E

+
5

2
,1

6
E

+
50

0,5

1

1,5

2

2,5

E
rr

or
 (

B
P

)

Iteration

Figure 5. SCG and BP on the =1 problem.

12 We will refer to this situation as a ravine phenomenon.

19

At three stages in both runs very little reduction in error is obtained13 which indicates the

presence of ravine phenomena. SCG does not avoid the ravines, but handles them

effectively. BP uses many more iterations to get through the ravines.

5 Conclusion

Using an optimization approach an alternative and more effective learning algorithm

(SCG) than the standard backpropagation (BP) has been introduced. SCG belongs to the

class of Conjugate Gradient Methods, which shows superlinear convergence on most

problems. Through several experiments we find that SCG is at least an order of

magnitude faster than BP. The speed-up depends on the convergence criteria, i.e, the

bigger demand for reduction in error, the bigger the speed-up. By using a step size

scaling mechanism SCG avoids a time consuming line-search per learning iteration,

which makes the algorithm faster than other second order algorithms recently proposed.

Tests on the 3, 4, 5, 6 and 7 bit parity problem suggest that SCG scale an order of

magnitude better than BP; however, tests with smaller size training sets and bigger

problems have to be made to conclude anything definite about the scaling of SCG.

SCG and BP were tested on the =1 problem using a network whose architecture

contained problem dependent structural information. Mühlenbein has earlier reported that

BP fails on this test and conludes that BP is not able to use structural information

available in the network. Surprisingly BP, although having major difficulties, does solve

the problem when enough iterations are used. Incorporating problem dependent structural

information in the architecture of a neural network often lowers the overall complexity.

The smaller the complexity of the neural network relative to the problem domain, the

bigger the possibility that the weight space contains long ravines characterized by sharp

curvature. It is well known that BP is very inefficient when these ravine phenomena

occure, and for that reason BP has major difficulties solving the =1 problem. SCG can

handle the ravine phenomena more effectively using second order information, and

solves the =1 problem without these difficulties.

Acknowledgement

I would like to thank Brian Mayoh (AAU), Kim Plunkett (AAU) and Ole Østerby (AAU)

for many good discussions and advice. I am also grateful to Eric Johansson (LLNC)

who has been very helpful answering questions concerning his recent work on neural

networks and conjugate gradient algorithms.

13 At error 2.1, 1.6 and 0.4.

20

References

1. Battiti, R., F. Masulli (1990), BFGS Optimization for Faster and Automated

Supervised Learning, INCC 90 Paris, International Neural Network Conference, pp

757–760.

2. Fletcher, R. (1975). Practical Methods of Optimization, John Wiley & Sons.

3. Gill, P.E., W. Murray, M.H. Wright (1980). Practical Optimization, Academic

Press. inc.

4. Hestenes, M. (1980). Conjugate Direction Methods in Optimization, Springer

Verlag, New York.

5. Hinton, G. (1989). Connectionist Learning Procedures, Artificial Intelligence 40, pp

185–234.

6. Johansson, E.M., F.U. Dowla, D.M. Goodman (1990), Backpropagation Learning

for Multi-Layer Feed-Forward Neural Networks Using the Conjugate Gradient Method,

Lawrence Livermore National Laboratory, Preprint UCRL-JC-104850.

7. Judd, J.S. (1987), Complexity of connectionist learning with various node

functions, COINS Tech. Rept. 87-60, University of Amherst, Amherst, MA.

8. Lapedes, A., R. Farber (1986). A self-optimizing neural net for content addressable

memory and pattern recognition, Physia 22 D, pp 247–259.

9. Marr, D. (1982), Vision, W.H. Freeman and Company.

10. Mühlenbein, H. (1990). Limitations of multi-layer perceptron networks - steps

towards genetic neural networks, Parallel Computing 14, pp 249–260.

11. Møller, M.F. (1990), Learning by Conjugate Gradients, The 6th International

Meeting of Young Computer Scientists, Czechoslovakia, in press.

12. Powell, M. (1977). Restart Procedures for the Conjugate Gradient Method, in:

Mathematical Programming, pp 241–254.

13. Rumelhart, D.E., G.E. Hinton, R.J. Williams (1986). Learning Internal

Representations by Error Propagation, in: Parallel Distributed Processing: Exploration in

the Microstructure of Cognition, Eds. D.E. Rumelhart, J.L. McClelland, MIT Press,

Cambridge, MA., pp 318–362.

14. Schwartz, J.T. (1988). The New Connectionism: Developing Relationships Between

Neuroscience and Artificial Intelligence, in: The Artificial Intelligence Debate. False

Starts, Real Foundations, Eds. S.R. Graubard, MIT Press, Cambridge, MA., pp 123–

143.

15. Tesauro, G. (1987), Scaling relationships in back-propagation learning: Dependence

on training set size, Complex Systems 2, pp 367–372.

21

16. Vogl, T.P., J.K. Mangis, W.T. Zink, D.L. Alkon (1988). Accelerating the

Convergence of the Back-Propagation Method, Biological Cybernetics 59, pp. 257–263.

17. Watrous, R.L. (1987), Learning Algorithms for Connectionist Networks: Applied

Gradient Methods of Nonlinear Optimization, Proc. IEEE 1st International Conference on

Neural Networks 2, pp 619–628.

