

Interactive Collision Detection for 3D Environments

Mauro Figueiredo
Univ. do Algarve

Faro
mfiguei@ualg.pt

Abstract
This paper presents a collision detection algorithm for 3D simulated environments. It describes the implementa-
tion of a collision detection approach using the Overlapping Axis-Aligned Bounding Box (OAABB) and R-trees
to improve performance. Experimental results show that this implementation is effective in determining interac-
tively intersections between 3D models.

Keywords
Collision detection, virtual environments, Computer Graphics.

1. INTRODUCTION
It is a complex problem to find collisions in virtual envi-
ronments in real-time. Collision detection is a very time
consuming task. In some environments it can easily con-
sume up to 50% of the total run time. In real industrial
case studies, 3D virtual prototypes can be very complex
with thousands of primitives. Therefore developing real-
time collision detection algorithms for complex environ-
ments is still a challenging research issue. In such envi-
ronments, it is important to maintain at least a frame rate
of 20Hz to create a usable simulator.
The problem of finding collisions in an environment is
more complex for the narrow phase. The broad phase of
the collision detection problem is responsible for discard-
ing pairs of objects that do not collide. The narrow phase
determines if two objects are colliding.
This paper describes a collision detection algorithm
based on an R-tree structure of Axis-Aligned Bounding
Boxes (AABB) and using the Overlapping Axis-Aligned
Bounding Box (OAABB) to solve the narrow phase of
the collision detection problem. It finds intersections be-
tween two objects. Experimental results show that the
algorithm presented in this paper determines intersections
at interactive rates.

2. BACKGROUND
To find collisions between two 3D objects it is frequently
used bounding volume hierarchies (BVH) that organize
the triangles of an object. In this way, performance is
improved by reducing the number of pairs of bounding
volume tests.
Suppose that the bounding volumes of two objects are
organized in two hierarchical trees of bounding volumes
(BV) A and B. The classic scheme for hierarchical colli-
sion detection is a simultaneous, recursive traversal of
two bounding volumes trees of A and B. This can be de-
scribed by the algorithm presented in Figure 1.

TraverseTrees (A, B)

update BV of B into coordinate system of A

if A and B do not intersect then

 return

if A and B are leaves then

 update triangle B into coordinate system of A

 return intersection of triangles enclosed by A and B

else

 if A is leaf and B is an inner node then

 for all children B[i] do

 TraverseTrees (A, B[i])

 else

 if A is an inner node and B is a leaf node then

 for all children A[i] do

 TraverseTrees (A[i], B)

 else

 for all children A[i] and B[j] do

 TraverseTrees (A[i], B[j])

Fig. 1: Classical hierarchical traversal scheme for colli-
sion detection.

Nevertheless, Zachmann and Knittel [Zachmann03] iden-
tify several problems in the traditional traversal. In par-
ticular, they showed that several nodes in the hierarchy
trees of A and B are visited more than once. The second
problem is that the nodes of the bounding volume tree of
B, for example, have to be transformed into the local co-
ordinate system of A. As a consequence of the first prob-
lem, this transformation is repeated several times for the
same node, reducing performance. The algorithm pre-
sented in this paper solves these problems.
There are several public toolkits to solve the narrow
phase of the collision detection based on bounding vol-
ume hierarchies. They differ on the type of bounding
volume implemented.

SOLID [Bergen97] and OPCODE [Terdiman01] uses
axis-aligned bounding boxes (AABB). RAPID
[Gottschalk96], V-COLLIDE [Hudson97], PQP [Lar-
sen99], H-COLLIDE [Gregory99], use oriented bound-
ing boxes (OBB). QuickCD [Klosowski98] and Dop-
Tree [Zachmann98] uses k-dops; and Swift++ [Eh-
mann01] uses convex hulls (CH). There are also hybrid
approaches like QuOSPOs [He99] that use a combination
of OBBs and k-dops.
It is very difficult to compare different approaches since
performance also depends on the shapes of the models,
type of contact, size of the models and others.
The main advantage of SOLID, OPCODE and Box-Tree
is that AABBs are faster to intersect. When using
AABBs, only six comparisons are required to find out if
two axis-aligned bounding boxes are overlapping. It is
also possible to say that two AABBs are disjoint, in the
best case situation, with only one comparison. Another
advantage of using AABBs is that it is simple to update
these volumes as an object rotates and translates.
RAPID approximates 3D objects with hierarchies of ori-
ented bounding boxes (OBBs). An OBB is a rectangular
bounding box with an arbitrary orientation so that it en-
closes the underlying geometry more tightly. The repre-
sentation of an oriented bounding box encodes position,
widths and orientation. The main advantage of RAPID is
that OBBs are better approximations to triangles reduc-
ing effectively the number of intersecting operations.
V-COLLIDE solves the broad-phase of the collision de-
tection using a sweep-and-prune operation to find pairs
of objects potentially in contact. It uses RAPID to find in
the narrow phase which pairs of objects intersect.
PQP solves the narrow phase and is also based on the
RAPID library. It uses oriented bounding boxes to find
intersecting objects. PQP also computes the distance be-
tween closest pair of points using swept spheres.
H-COLLIDE is a framework to find collisions for haptic
interactions. It uses a hybrid hierarchy of uniform grids
and trees of OBBs to exploit frame-to-frame coherence.
It was specialized to find collisions between a point
probe against 3D objects.
The QuickCD and Dop-Tree implementations build a
hierarchy tree of discrete orientation polytopes. Discrete
orientation polytopes, or k-dops, are convex bounding
volumes whose faces are determined by halfspaces
whose outward normals come from a small fixed set of k
orientations. The main advantage of using discrete orien-
tation polytopes is that k-dops are better approximations
to the underlying geometry than AABBs with the advan-
tage of its low cost compared to OBBs. A major draw-
back of QuickCD is that allows only one moving object.
Swift++ builds a hierarchy of convex hulls and intersec-
tion is tested using a modified Lin-Canny [Lin91] closest
feature algorithm.

He [He99] uses a hybrid approach that combines OBBs
and k-dops called QuOSPOs. This approach provides a
tight approximation of the original model at each level.
Since collision detection is a very demanding task, re-
searchers are also working in using existing graphics
accelerated boards (GPU) [Baciu03, Knott03, Govinda-
raju03, Yoon04] or dedicated hardware [Raabe06] to
accelerate collision detection by hardware.
Algorithms using graphics hardware use depth and sten-
cil buffer techniques to determine collisions between
convex [Baciu03] and non-convex [Knott03] objects.
CULLIDE [Govindaraju03] is also a GPU based algo-
rithm that uses image-space occlusion queries and OBBs
in a hybrid approach to determine intersections between
general models with thousands of polygons. MRC
[Yoon04] deals with large models composed of dozens
of millions of polygons by using the representation of a
clustered hierarchy of progressive meshes (CHPM) as a
LOD hierarchy for a conservative error bound collision
and as a BVH for a GPU-based collision culling algo-
rithm.
These GPU-based algorithms are applicable to both rigid
and deformable models since all the computations are
made in the image-space. Collision detection methods
using GPUs have the disadvantage that they compete
with the rendering process, slowing down the overall
frame rate. Furthermore, some of these approaches are
pure image based reducing their accuracy due to the dis-
crete geometry representation.

3. COLLISION DETECTION
This section presents the latest implementation details of
the initial ideas [Figueiredo03] of an approach for deter-
mining intersecting surfaces and triangles between a pair
of 3D objects. For virtual prototyping applications, three-
dimensional objects can be defined by a collection of
surfaces, where each surface is tessellated individually
and represented as a collection of triangles. For virtual
environment or gaming applications, 3D objects can be
simply defined as a polygonal soup.
The time to determine collisions between two objects
using BVH depends on: (1) the cost of intersecting and
updating bounding volumes; (2) the cost of intersecting
triangles; and (3) on the number of such operations.
The approach presented in this paper is supported by R-
tree hierarchies of axis-aligned bounding boxes and the
Overlapping Axis-Aligned Bounding Box to reduce the
cost and the number of updating and intersection opera-
tions and therefore improve performance.
The choice of bounding volume type influences perform-
ance of the collision detection process. The implementa-
tion of the collision detection algorithm presented in this
paper uses axis aligned bounding boxes because they are
faster to intersect.
It was decided to use R-trees [Guttman84] to build
bounding volume hierarchies and organize 3D geometry
of objects to improving the performance of the collision

S1

S2

S3
S4

S'1

S'2

S'3

A

B

AABB(S2)

OAABB(A,B)

AABB(S1)

AABB(S4)AABB(S3)

AABB(S'2)

AABB(S'1)

AABB(S'3)

detection process. R-trees are a good choice for collision
detection because first, at any level of the tree, each
primitive is associated with only a single node. Secondly,
in an R-tree all leaf nodes appear on the same level.
Third, because the depth of a R-tree storing n primitives
is logm n , m is the minimum number of children of a
node.
To speed up the process of finding collisions each object
is represented by an R-tree data structure in its own local
coordinate system (Figure 1). A hierarchical tree is built,
grouping neighbouring surfaces. The leaf nodes of the R-
tree point to the geometry of the surfaces that define the
object. For two objects, it checks for collisions between
surfaces which are in the neighbourhood, eliminating
comparisons with those that are far away.

Fig. 1: Each object of the scene graph is represented by an R-
tree to organize its surfaces [Figueiredo03].

Surfaces from a three-dimensional model can be complex
with a large number of triangles. For this reason, the im-
plementation described in this paper also uses an R-tree
to organize the triangles spatially (Figure 2) and hence to
quickly reject triangles that cannot intersect. In this ap-
proach, an R-tree is computed for each surface, grouping
neighbouring triangles to eliminate comparisons with
those that are faraway from the area of intersection.

Fig. 2: Each surface of the 3D model is also represented by an R-
tree data structure to organize spatially its triangles.

The proposed algorithm is also based in the use of the
Overlapping Axis-Aligned Bounding Box, OAABB (A,
B), of two geometric primitives, to improve the perform-
ance of the collision detection process. The OAABB is
defined as the volume that is common to two axis-
aligned bounding boxes of A and B.
The OAABB is used to filter out primitives that cannot
intersect. Consider the example of Figure 3. Surface 2S
from object A cannot intersect object B since it is not
intersecting the OAABB. In this way, it is possible to
quickly filter out all surfaces from both objects that do
not intersect the OAABB.

Fig. 3: The Overlapping Axis-Aligned Bounding Box (OAABB)
concept shown in 2D [Figueiredo03].

The algorithm to find intersecting surfaces is presented in
Figure 4.

S-CD_Collide (A, B)

1:AABBB(A)=MB A AABBA(A)//update Cover BV

2:if (AABBB(A) do not intersect AABBB(B)) return

3:Determine OAABBB(A, B)

4:DescendRtree(SBV(B), OAABBB(A,B))

5:for each surface from SBV(B) intersecting
OAABBB(A,B)

6: DescendRtree(TBV(B), OAABBB(A,B))

7: for each triangle T(B) from TBV(B) intersecting
OAABBB(A,B)

8: Update triangle T(B) geometry into coord. sys-
tem of A

9: Compute the new optimal AABBA(T(B)) for T(B)

10: DescendRtree(SBV(A), AABBA(T(B)))

11: for each surface from SBV(A)

12: DescendRtree(TBV(A), AABBA(T(B)))

13: Intersect T(A) and T(B)

Fig. 4. Pseudo-code for finding intersecting surfaces and
triangles.
The collision detection process first checks if objects A
and B are disjoint (line 1-2 in Figure 4). The bounding
volumes of each object are originally computed in the
object’s local coordinate system, AABBA(A) and
AABBB(B), respectively. The transformation matrix that
converts the local representation of object A into the local
coordinate system of object B is defined as MB A. The
bounding volume of object A is updated to the coordinate

S1 S2 S3

Scene Graph

O1 Om.......

Si

R-tree
O1

S'1 S'2 S'3 S'i

R-tree
Om

T1 T2 T3

R-tree O1

S1 Si.......

Tj

R-tree
S1

T'1 T'2 T'3 T'k

R-tree
Si

system of object B, by computing the cover axis-aligned
bounding box, AABBB(A). Once the bounding volumes of
each object are in the same coordinate system they can be
checked for overlap. If this pair of AABBs does not
overlap, then the corresponding two objects are not inter-
secting and the process ends. If they overlap, then the
system determines the Overlapping Axis-Aligned Bound-
ing Box, OAABBB(A,B) of the two objects (line 3 in Fig-
ure 4), which is defined in the local coordinate system of
object B.
The next step of the collision detection process deter-
mines the surfaces from object B intersecting the
OAABB (line 4 of Figure 4). As mentioned before, the
surfaces of object B are organized in a Surface Bounding
Volume R-tree called SBV(B). The surfaces of B are
stored at the leaf nodes of the SBV(B) R-tree. By de-
scending this R-tree, the surfaces of object B that do not
intersect the OAABBB(A,B) are filtered out. Only the sur-
faces at the leaf nodes intesecting the OAABBB(A,B) are
candidate for collision.
Each surface of object B is tessellated and represented by
a collection of triangles. The triangles of each surfaces
are also represented in its own Triangle Bounding Volu-
me R-tree data structure, organizing its triangles into sub-
regions. The next step of the collision detection process
descends to the Triangle Bounding Volume R-tree
TBV(B) of each candidate surface from object B (lines 5
and 6 of Figure 4). This stage determines the triangles of
object B intersecting the OAABB.
Using the OAABB, the collision detection manager fil-
ters out surfaces and triangles of object B that cannot
intersect.
The triangles of object B intersecting the OAABB are
transformed into the coordinate system of object A (line
8). At this point is also determined the triangle’s optimal
bounding volume (line 9). The new optimal AABB is
built by computing the new minimal and maximal values
in the x, y and z axes, defining the new extents of the
bounding volume. This stage computes the optimal
bounding volume, since it is faster than computing the
cover AABB. Furthermore, the optimal AABB encloses
the triangle better than a cover AABB.
Then, the collision detection process descends the Sur-
face Bounding Volume SBV(A) R-tree for object A (line
10 of Figure 4). In this step it finds surfaces of object A
intersecting the triangle’s optimal AABBA(T(B)) of object
B.
To determine if a pair of surfaces intersects, it is neces-
sary to find a pair of intersecting triangles. Then, the col-
lision detection process descends to the Triangle Bound-
ing Volume R-tree TBV(A) of each candidate surface
from object A (lines 11 and 12 of Figure 4). This stage
determines the triangles of object A who’s bounding
volumes intersect the triangle’s optimal AABB of object
B.
The final step is to proceed with the intersection between
pairs of candidate triangles (line 13) implemented with

[Guige03] algorithm. If there is a pair of intersecting
triangles then the corresponding surfaces is intersecting.

4. EXPERIMENTAL RESULTS
This section presents the performance evaluation results
of the proposed collision detection algorithm described in
this paper.
Two examples are presented: i) a process plant case
study and ii) a grid. All the experiments conducted in the
following paragraphs run in an Intel Core 2 Duo T7300,
2GByte of RAM memory at 2GHz.
The first example is a real application from maintenance
simulation in virtual prototyping environments. It is a
case study (Figure 5), from UMIST in Manchester that
shows the assembly of a process plant. This example is
used to test the collision detection in virtual prototyping
environments where it is important to find intersecting
surfaces. This scenario has a total number of eight parts,
one thousand and seventy three surfaces and 24 415 tri-
angles.

Fig. 5. Process plant case study.

The collision detection implementation can be configured
to determine first intersecting surface, all intersecting
surfaces or all the intersecting triangles between three-
dimensional components in a virtual prototyping envi-
ronment. The process plant case study was tested with an
interaction sequence of 233 intersecting steps that simu-
late assembly operations. Table 1 presents the time to
find first, all intersecting surfaces and all intersecting
triangles.

Table 1. Collision detection time to find intersecting surfaces
for the process plant.

Time in milliseconds per step to determine:

Using OAABB Yes No

(i) first intersecting surface per step 0.09 0.28

(ii) all intersecting surfaces 0.94 1.75

(iii) all intersecting surfaces and all intersecting
triangles 1.26 2.06

The proposed collision detection algorithm achieves inte-
ractive rates in real industrial applications as desired.
Table 1 also presents the time obtained when the over-
lapping axis-aligned bounding box (OAABB) approach
is not used. It is seen a significant improvement in per-
formance by using the overlapping axis aligned bounding
box.
This improvement is explained by table 2. The cost of
finding collisions depends on several factors. The choice
of type of bounding volume influences the number and
the cost of executing bounding volume intersections. For
AABBs and k-dops the cost and the number of updating
bounding volumes also influences performance. Table 2
shows an effective reduction in the number of AABBs
tests and update bounding volume operations explaining
the better performance obtained by the OAABBs.

Table 2. Average number of operations per step to determine
intersections for the process plant.

Number of operations: First Triangle All Triangles

Using OAABB Yes No Yes No

AABBs tests 1263 2915 21836 30663

AABBs updates 102 713 537 3279

It is also important to compare the performance of this
algorithm with other collision detection toolkits. Table 3
presents the times obtained comparing the implementa-
tion described in this paper, named as S-CD (Surface
Collision Detection), with PQP, RAPID, OPCODE and
Dop Tree. The times presented were obtained in the de-
termination of the first intersecting triangle and also for
all the intersecting triangles. S-CD is effective in the de-
termination of intersections interactively.

Table 3. Time to find intersections for the process plant.

Time to find intersections (milli-
seconds):

First
Triangle

All
Triangles

PQP 0.40 4.96

RAPID 0.12 3.62

Dop Tree 0.04 17.29

OPCODE 1.52 2.09

S-CD 0.09 1.26

The second is a synthetic model of a grid (Figure 6) with
414 720 triangles available from a benchmarking suite
[Trenkel, et al. 2007] to compare in close proximity pair
wise static collision detection algorithms for rigid ob-
jects.
This example is used to test the performance of collision
detection in finding intersecting triangles in environ-
ments where objects are defined as polygonal soups.
The benchmark generates a number of positions and ori-
entations for a predefined distance in close proximity. It
does not test performance of collision detection ap-

proaches when intersections occur. It is available to
download together with a set of objects that cover a wide
range of possible scenarios for collision detection algo-
rithms, and a set of precomputed test points for these
objects.

Fig. 6. Model of a grid object with 414 720 faces.

Figure 7 shows the timing results obtained for the
benchmark application using two grid objects.

 0

 2

 4

 6

 8

 0 0.05 0.1 0.15 0.2

tim
e

/ m
ill

is
ec

distance

grid / 414720

bx

do

op

pqp

so

s-cd

vc

Fig. 7: Results of the benchmark for the grid scene with 414 720
faces. The x-axis denotes the relative distance between the ob-
jects, where 1.0 is the size of the object. Distance 0.0 means that
the objects are almost touching but do not collide. The abbrevia-
tions for the libraries are as follows: bx=BoxTree, do=Dop-Tree,
pqp=PQP, vc=V-Collide, op=Opcode, so=FreeSOLID, s-cd=S-
CD.

To test performance the benchmark manager keeps one
grid object static. The second grid object is placed at spe-
cified test positions and orientations. The x-axis in Figure
7 denotes the relative distance between the objects, whe-
re 1.0 is the size of the object. Distance 0.0 means that
the objects are almost touching but do not collide. Since
collision detection is mostly used to avoid interpenetra-
tions, this position is the most important in many simula-
tions, because most of the times, objects are allowed to
collide only a little bit and then the collision handling
resolves the collision by backtracking. Distance 0.0 is
also the most time consuming (Figure 7) because the
bounding volume hierarchies for the two objects overlap,
but objects do not.
The time to find intersections is greater at position 0.0
and then as the distance between objects increases the
time to find intersections reduces. As distance between
the two objects increase then the overlap between the two
bounding volume hierarchies decrease. In this case, the
bounding volume of an object is found to do not intersect
the bounding volume of the other object higher in the
tree, then it cannot intersect any object bellow that node.
Thus, they are all rejected quicker and it is faster to con-
clude that objects do not intersect.
Figure 7 shows that S-CD runs interactively at distance
0.0 as desired. For virtual environment applications a
frame rate of at least 20Hz is desired and is possible to
achieve frame rates higher than 100Hz. It should be re-
garded that in this benchmark S-CD does not uses sur-
face knowledge and in this way the approach described
in this paper does not use all its features to improve per-
formance.

5. CONCLUSION
This paper presents a novel collision detection algorithm
that computes intersecting surfaces and triangles solving
the narrow phase problem of the collision detection.
It describes the use of R-trees and the OAABB for the
implementation of an efficient method to find collisions
in real time for virtual reality applications.
The collision detection algorithm presented in this paper
uses the overlapping axis-aligned bounding boxes to-
gether with an R-tree structure, to filter out bounding
volumes of primitives that cannot intersect. Two primi-
tives intersect if the corresponding bounding volumes
also intersect the OAABB. The traversal algorithm pre-
sented also reduces the number of node visits to one for
object A, improving the overall performance and solving
outlined problems of the traditional traversal scheme.
The OAABB also contributes for the significant reduc-
tion of the number of bounding volume update opera-
tions.
This paper also showed that the collision detection runs
interactively. The S-CD toolkit is publicly available for
download at http://w3.ualg.pt/~mfiguei.

6. REFERENCES
 [Baciu03] Baciu, G. and Wong, S., 2003. Image-based

Techniques in a Hybrid Collision Detector. IEEE
Trans. On Visualization and Computer Graphic, 9, 2,
254-271.

 [Bergen97] Van Der Bergen, G., 1997. Efficient Colli-
sion Detection of Complex Deformable Models using
AABB Trees. Journal of Graphics Tools 2, 4, 1-13.

 [Ehmann01] Ehmann, S. and Lin, M., 2001. Accurate
and fast proximity queries between polyhedra using
convex surface decomposition. Computer Graphics
Forum. 20, 500–10.

[Figueiredo03] Figueiredo, M. and Fernando, T., “An
Unified Framework to Solve the Broad and Narrow
Phases of the Collision Detection Problem in Virtual
Prototype Environments”. In Proc. of 2003 Interna-
tional Conference on Geometric Modelling and
Graphics, Londres, Reino Unido, pp. 130-136, IEEE
Computer Society, 16-18 Julho, 2003.

 [Gottschalk96] Gottschalk, S. , Lin, M. and Manocha,
D., 1996. Obb-tree: A hierarchical structure for rapid
interference detection. Proc. of ACM Siggraph'96,
171-180.

 [Govindaraju03] Govindaraju, N., Redon, S., Lin, M.
and Manocha, D., 2003. CULLIDE: Interactive colli-
sion detection between complex models in large envi-
ronments using graphics hardware. Graphics Hard-
ware 2003, 25–32.

 [Gregory99] Gregory, A., Lin, M., Gottschalk, S. and
Taylor, R., 1999. A Framework for Fast and Accurate
Collision Detection for Haptic Interaction. Proc. of
IEEE Virtual Reality Conference, 38-45.

 [Guige03]Guige, P. and Devillers, O., 2003. Fast and
Robust Triangle-Triangle Overlap Test using Orienta-
tion Predicates. Journal of Graphics Tools, 8, 1, 25-
42.

 [Guttman84] Guttman A., 1984. R-trees: A dynamic
index structure for spatial searching. Proc. of the
ACM SIGMOD International Conference On Man-
agement of Data, 47-57.

 [He99] He, T., 1999. Fast collision detection using
QuOSPO trees. Proc. of the Symposium on Interac-
tive 3D graphics, 55–62.

 [Hudson97] Hudson, T., Lin, M., Cohen, J., Gottschalk,
S. and Manocha, D., 1997. VCollide: Accelerated
Collision Detection for VRML. Proc. of VRML.

 [Klosowski98] Klosowski, J., Held, M., Mitchell, J.,
Sowizral, H. and Zika, K., 1998. Efficient Collision
Detection using Bounding Volume Hierarchies of k-
DOPs. IEEE Trans. On Visualization and Computer
Graphics 4, 1, 21-36.

 [Knott03] Knott, D. and Pai, D., 2003. ClnDeR: Colli-
sion and Interference Detection in Real-time using
Graphics Hardware. Proc. of Graphics Interface 2003,
73-80.

 [Larsen99] Larsen, E., Gottschalk, S., Lin, M. and
Manocha, D. 1999. Fast Proximity Queries with
Swept Sphere Volumes. Technical report TR99-018,
UNC.

 [Lin91] Lin, M. and Canny, J. 1991. Efficient algorithms
for incremental distance computation. IEEE Confer-
ence on Robotics and Automation, 1008–1014.

 [Raabe06] Raabe, A., Hochgurtel, S., Anlauf J. and
Zachmann, G., 2006. Space-efficient FPGA-
accelerated collision detection for virtual prototyping.
Proc. of Design, Automation and Test in Europe,
206-211.

 [Terdiman01] Terdiman, P., 2001. Memory-optimized
bounding-volume hierarchies.
http://www.codecorner.com/Opcode.pdf.

 [Trenkel07] S Trenkel, R Weller, G Zachmann. A
Benchmarking Suite for Static Collision Detection
Algorithms. In International Conference in Central

Europe on Computer Graphics, Visualization and
Computer Vision (WSCG), Czech Republic, 2007.

 [Yoon04] Yoon, S., Salomon, B., Lin, M. and Manocha,
D., 2004. Fast Collision Detection between Massive
Models using Dynamic Simplification. Eurographics
Symposium on Geometry Processing, 136-146.

 [Zachmann98] Zachmann, G., 1998. Rapid Collision
Detection by Dynamically Aligned DOP-Trees. In
Proc. of IEEE Virtual Reality Annual International
Symposium; VRAIS ’98, pages 90–97. Atlanta,
Georgia.

 [Zachmann03] G. Zachman, and G. Knittel, “An Archi-
tecture for Hierarchical Collision Detection,” Pro-
ceedings of WSCG' 2003, the 11th International Con-
ference in Central Europe on Computer Graphics,
Visualization and Computer Vision'2003, Czech Re-
public, 2003.

