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I'made a big decision a little while ago.

I don’t remember what it was, which prob’ly goes to show
That many times a simple choice can prove to be essential
Even though it often might appear inconsequential.

I must have been distracted when I left my home because
Left or right I'm sure I went. (I wonder which it was!)
Anyway, I never veered: I walked in that direction
Utterly absorbed, it seems, in quiet introspection.

For no reason I can think of, I've wandered far astray
And that is how I got to where I find myself today.

Taken from The Indispensable Calvin and Hobbes, copyright 1992 by Bill Watterson.
Reprinted by permission of Andrews McMeel Publishing. All rights reserved.
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Chapter 1

Introduction

“One never notices what has been done.
One can only see what remains to be done.”
Marie Curie

Current state-of-the-art in computer graphics enables us to interactively
explore three-dimensional data, such as architecture and scientific visual-
izations. In many applications, these data represent environments with
behavior, for instance, in games and simulators. Often, the goal of such
applications is to simulate some aspects of the real world as accurately
as possible. A term often used for this type of applications is virtual re-
ality, although this term typically refers to immersively experienced en-
vironments that utilize a head-mounted display and a 3D pointing and
grabbing device such as a data glove.

One aspect of the real world that greatly affects the manner in which
we experience an environment is the constraint that at the same time two
material objects cannot occupy the same point in space (at low energies
[51]). Occasionally, we regard this constraint as undesired, since it restricts
our motions. However, impenetrability enables manipulations, such as
pushing and stacking objects. Also the fact that we can stand and walk
depends on the ground being impenetrable.

In general, object representations in simulated environments do not
impose impenetrability. If we want a simulated environment to behave
according to the real world with respect to the impenetrability of material
objects, we need to incorporate a mechanism that enforces this constraint.
An important part of such a mechanism is detecting configurations of in-
terpenetrating objects, which are called collisions.

We refer to the agent responsible for resolving collisions as the colli-
sion handler. The collision handler often needs additional data pertaining

1



2 CHAPTER 1. INTRODUCTION

to the configuration of the colliding objects. These data are called response
data. For example, in physics-based simulations, collisions are resolved by
simulating the effect of the forces that act on a pair of colliding objects as a
result of their impenetrability. Here, the response data are a contact point
and a contact plane at the moment of first contact.

1.1 Problem Domain

In this thesis, we address the problem of detecting collisions among mov-
ing 3D objects. In particular, we focus on collision detection for application
in interactive 3D computer animation. We restrict ourselves to shape rep-
resentation types that are commonly used in interactive 3D graphics, and
pay special attention to the performance of the collision detection algo-
rithms.

In computer animation, object configurations are given only for dis-
crete time steps, called frames. Collision detection is performed only for
these time steps. No prior knowledge concerning the trajectories, motions,
and velocities of the objects is assumed. However, we often assume some
degree of coherence between the configurations of objects in two consecu-
tive frames.

In interactive animation, each frame is computed in real-time. In order
for the human eye to experience smooth motion, the animation system
needs to display at least 25 frames per second. Hence, all tasks required
for computing a single frame, including detecting and resolving collisions,
should take no more than a few hundredths of a second in total. For this
reason, the performance of the used collision detection methods is crucial,
and thus receives our main attention. However, we will also address other
attributes, such as usage of storage space, and preprocessing time.

We will consider collision detection algorithms for objects represented
by shapes composed of primitive shapes, such as polygons, convex poly-
hedra, spheres, boxes, cones, and cylinders. Other methods for describing
3D objects, such as constructive solid geometry (CSG) and implicit sur-
faces, are not (yet) applied in interactive 3D graphics, and are not consid-
ered here.

Besides collision detection methods, we also examine methods for
computing response data for the mentioned shape types. The response
data types for colliding objects that we consider are: a common point, i.e.,
a point that is contained in both objects, a representation of the intersec-
tion, and an approximation of a contact point and a contact plane.
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1.2 Historical Background

The earliest applications of 3D collision detection are found in robotics and
automation [10]. Here, product assembly or test facilities are simulated on
a computer in order to verify interference problems. The different objects
to be checked for interference are represented as polyhedra. Interference
checking in robotics simulations is often performed on a continuous rather
than a discrete time axis, i.e., the objects are checked for interference in
continuous four-dimensional space-time [11, 12, 15]. However, this ap-
proach is applicable only for a limited class of objects and motions.

The problem of computing the minimum distance between two objects
is more general than the problem of finding an intersection. Hence, algo-
rithms for computing the distance are useful for collision detection as well.
Two early algorithms for computing the distance between a pair of convex
polyhedra are described in [14] and [40]. Moreover, in combination with
the velocities of the objects, the distance between the objects allows us to
estimate the collision times [24], which is useful in robotics simulations,
where the bounds of the velocities are a priori known.

The first uses of collision detection in 3D computer animation are
found in physics-based simulations [68, 49, 2]. Although his work is not
directly aimed at interactive applications, Baraff was the first to exploit
coherence in-between frames in order to improve the performance of the
collision detection [3]. Baraff exploits frame coherence in two ways. He
uses a scheme that allows updating the list of objects pairs for which the
bounding boxes overlap in time that is expected linear in the number of
objects, when coherence is high. Furthermore, Baraff caches separating
planes of convex object pairs that are found to be disjoint. These separat-
ing planes are used for quickly answering intersection queries in the next
frame.

A similar technique is used in an algorithm by Lin and Canny for com-
puting the distance between convex polyhedra [61]. Here, the closest fea-
tures (vertices, edges, facets) of a pair of polyhedra are cached, and incre-
mentally updated in each new frame. An update of the closest feature pair
takes roughly constant time when frame coherence is high. The Lin-Canny
algorithm is applied in I-COLLIDE, which is the first collision detection li-
brary for interactive applications to become publicly available [22].

After Lin-Canny, other incremental algorithms for convex polyhedra
followed that have the same time bound. Chung and Wang presented an
algorithm for updating a separating axis of a pair of disjoint polyhedra,
similar to Baraff’s separating planes [20]. Cameron presented in [13], an
enhanced version of the Gilbert-Johnson-Keerthi distance algorithm [40],
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which is used for incrementally computing the distance between a pair
of polyhedra. Finally, Mirtich presented an enhanced version of the Lin-
Canny algorithm, which is claimed to have improved performance and
robustness [66].

Current state-of-the-art in interactive 3D graphics allows the use of
shapes composed of thousands of primitives. In order to reduce the num-
ber of pairwise primitive intersection tests in collision detection of ob-
jects represented by such shapes, spatial data structures are often applied.
These data structures are used to quickly reject a large number of primi-
tives from intersection testing, based on their geometric location. In the
last few years, spatial data structures that are used for this purpose have
received a lot of attention.

Data structures based on space partitioning techniques were explored
earliest. Garcia-Alonso, Serrano, and Flaquer presented a solution based
on voxel grids [38]. Zachmann and Felger presented a data structure based
on the k-d tree, called BoxTree [106]. Model partitioning techniques in-
corporating bounding volume hierarchies are currently the mostly used.
Palmer and Grimsdale [78] and Hubbard [56] apply hierarchies of spheres
for speeding up collision detection. Gottschalk e.a. presented a structure
called OBBTree, which uses oriented bounding boxes as volumes [46]. An
implementation of the algorithms for constructing and testing OBBTrees
has been made publicly available in form of a collision detection package
called RAPID [44]. Recently, both Klosowski e.a. and Zachmann presented
hierarchical structures of discrete-orientation polytopes for collision detec-
tion [59, 105]. All these structures are static, and are thus applicable only
to rigid objects.

Collision detection methods for deformable polygonal objects have not
yet been extensively explored. Work by Smith e.a. describes a dynamic
data structure based on the octree for speeding up collision detection of
deformable objects [88]. Their algorithm runs in a time that is close to
being linear in the total number of polygons, which is much slower than
the algorithms for rigid objects. Fast algorithms for deformable models
are still an important research topic.

Other challenges that remain are improving the robustness and perfor-
mance of object intersection tests. We see that in the last few years, most
of the innovations in 3D collision detection are aimed at improving these
two qualities, however, further research is still necessary.

Finally, with the adoption of multiple shape representation methods
in 3D modeling for computer animation, as for instance in VRML [8], the
need arises for collision detection algorithms that can be applied to collec-
tions of objects that are composed of a mix of shape types. The question
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of how to efficiently deal with multiple shape types in collision detection
still needs to be addressed.

1.3 Organization and Contributions

The rest of this thesis is organized as follows. In Chapter 2, we define the
concepts used in this thesis. We discuss different types of shape repre-
sentations, different types of motion, response data types, and efficiency
considerations.

In Chapter 3, we discuss a number of algorithms for testing intersec-
tions between non-convex polygons, and between a polygon and a num-
ber of volume types. Here, we present new algorithms for testing and
computing the intersection of a pair of non-convex polygons, which run
in time linear in the number vertices of the polygons.

Chapter 4 describes algorithms for collision detection of convex ob-
jects, mostly algorithms for convex polyhedra. We discuss algorithms for
finding a common point, for finding a separating axis, and for computing
the distance. In particular, we look into incremental algorithms that ex-
ploit frame coherence. We present a new algorithm for incrementally com-
puting a separating axis. The algorithm is based on the Gilbert-Johnson-
Keerthi algorithm, and is called ISA-GJK. The ISA-GJK algorithm has the
following properties:

* ISA-GJK is, although slightly slower than the Chung-Wang algo-
rithm, significantly faster than incremental distance algorithms, such
as Lin-Canny.

 ISA-GJK is applicable to convex objects in general, not merely to con-
vex polyhedra, as for instance Lin-Canny and Chung-Wang.

@ ISA-GJK does not have termination problems as the original GJK has
for degenerate configurations of objects.

Hence, ISA-GJK’s strong point is versatility, whereas, of the mentioned
algorithms for collision detection of convex objects, its performance is sur-
passed only by Chung-Wang’s.

In Chapter 5 we discuss spatial data structures that are used for speed-
ing up collision detection of models composed of a large number of ob-
jects. We present an improvement of Baraff’s incremental sweep and
prune scheme [4] for maintaining a list of pairs of objects whose world-
axes aligned bounding volumes overlap. Our version allows update times
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that are roughly linear in the number of moving objects only, rather than
the total number of objects, when frame coherence is high. Furthermore,
we show how a data structure, called AABB tree, can be used for speed-
ing up intersection testing between two complex deformable shapes. In
comparison to the OBB tree, a comparable data structure, we found the
following:

o Although AABB trees are not as fast as OBB trees, they are not much
slower, even in cases where the degree of overlap between the shapes
is high. In many cases, intersection tests of a pairs of AABB trees take
less than 50% more time than intersection tests on OBB trees for the
same shapes.

o AABB trees take roughly half as much storage as an OBB tree, and
take less time to construct.

o AABB trees can be updated reasonably fast after shape deformations.
Updating an OBB tree is considerably more complex.

Hence, we found the AABB tree, as presented in this thesis, to be the data
structure of choice for intersection tests of complex deformable shapes.
Furthermore, since they are not much slower than OBB trees, AABB trees
are a reasonable choice for rigid objects as well.

In Chapter 6 we describe the design of SOLID, a collision detection
library for interactive 3D computer animation. SOLID incorporates the
following innovative features:

e SOLID supports models composed of a mix of shape types, inclu-
ding boxes, cones, cylinders, spheres, simplices, convex polygons,
and convex polyhedra.

SOLID supports deformations of complex shapes.

e SOLID allows besides translations and rotations, also nonuniform
scalings on objects.

SOLID optionally computes response data that represent the approx-
imated contact points and contact plane of a pair of colliding objects.

The complete source code and documentation of SOLID have been made
publicly available under the terms of the GNU Library General Public Li-
cense [35]. Details on how to obtain the source code can be found at URL.:
http./fwww.win.tue.nl/cs/tt/gino/solid.
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Finally, Chapter 7 summarizes the results of our work, and presents
some pointers to interesting topics for future work.

A brief explanation of the notational conventions, as well as some lin-
ear analysis concepts can be found in Appendix A. Furthermore, we in-
clude a reference guide for SOLID version 2.0 in Appendix B.
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Chapter 2

Concepts

“Don’t reinvent the wheel. Just realign it.”
Anthony J. D’Angelo

In this chapter we define the concepts that are relevant within the con-
text of this thesis. We discuss a number of commonly used methods for
representing objects. We also describe different types of motion used in
computer animation, and discuss the problems of sampled motion. Fur-
thermore, we will look into the computation of response data for physics-
based simulations. Finally, we will cover some efficiency considerations,
such as coherence and storage, and discuss the difficulties in measuring
performance.

2.1 Obijects

In this section we define the class of objects for which collision detection
algorithms are presented in this thesis. An object is a closed bounded
nonempty set of points in three-dimensional Euclidean space. The dimen-
sion of an object is the dimension of its affine hull. An object is convex if
it contains all the line segments connecting any pair of its points. Convex
objects often allow simpler or faster algorithms for intersection testing. In
Chapter 4, we will discuss a number of algorithms that are applicable for
collision detection of convex objects only.

Objects may be composed of simpler objects called primitive shapes,
or primitives for short. Primitives are the building blocks of the objects
in the simulated environment. The primitives we consider are the com-
mon primitives for geometric modeling: spheres, cones, cylinders, boxes,
and polygons, as used for instance in VRML [8]. Furthermore, polytopes

9
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(Nonconvex) Polygons Convex Objects

Polytopes

Concave Polygons

Simplices

Convex Polygons

Convex Polyhedra

Line Segments @

Convex Quadrics

Figure 2.1: A taxonomy of primitive types

are also considered primitives. A precise definition of the term polytope
is presented further on. For now, let us define a polytope as a convex
object whose boundary is composed of a finite number of flat facets. Fig-
ure 2.1 shows a taxonomy of the types of primitives we consider. Here,
the term DOP denotes discrete-orientation polytope, i.e., a three-dimensional
polytope, whose facet orientations are chosen from a fixed finite set of ori-
entations.

Concave polyhedra are not considered primitives. They are described
as a grouping of primitives, either by decomposition into convex parts,
or by boundary representation as a set of polygons. We will discuss the
merits of both representations in Chapter 3. Let us have a closer look at
the different primitive types now.

211 Polygons

Polygons are currently the most commonly used modeling primitives in
3D graphics. A polygon is the region of a plane bounded by a closed chain
of line segments that lie in the plane. Let po, ... , p,—; be coplanar points.
Fori =0,... ,n — 1, the i-th line segment in the boundary of the polygon
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P P

Figure 2.2: Fixing a hole in a polygon

defined by this sequence of points is the segment connecting p; and p;g1,
where & denotes addition modulo n. The points are referred to as vertices
and the segments as edges. A polygon is called simple if no two edges
intersect, other than the edges that share a vertex.

According to this definition, a simple polygon does not have holes.
However, we allow a pair of identical edges in a polygon’s boundary such
that a polygons with holes may be constructed in the following way. Let
Po, - .., Pm—1 be a polygon’s outer boundary in clockwise orientation, and
9o, - - - , q»—1, the boundary of a hole in counter-clockwise orientation, and
let p; and q; be the closest pair of the two chains. Then, this polygon is
represented as a single chain of edges defined by the list

p0$---spiaqja"',qn—11q0""!qjypi9"-’pm—l'

By connecting the two chains at the closest points we avoid constructing a
non-simple polygon, since the edges connecting these points can not cross
any of the other edges. Figure 2.2 illustrates this construction. We see that
the polygon has a pair of identical oppositely directed edges.

For most applications, in particular for visualization, a representation
of a polygon as a list of vertices suffices. However, sometimes a repre-
sentation of the supporting plane of a polygon is convenient. The plane
supporting a triangle is computed by simply taking the cross product of
two of its edges as normal, and one of the vertices as point in the plane. For
polygons with more than three vertices, we may select three non-collinear
vertices, and compute the plane for the triangle formed by these three ver-
tices. However, since polygon vertices represented by machine numbers
are often not exactly coplanar, the plane may deviate considerably from
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the best-fit plane through the vertices if the three vertices are ill-chosen. A
better alternative is Newell’s method [93, 94], which produces a plane that
approximates the best-fit plane more closely.

For convex polygons, we can use simpler and faster rendering routines
than for non-convex polygons [1]. As a result of this, graphics libraries
and hardware usually support convex polygons only [102]. Hence, the
majority of polygonal models that are used in 3D graphics applications
are composed of convex polygons.

Conveniently, convex polygons also allow faster algorithms for inter-
section testing, as we will see in Chapter 3 and 4. In order to use these al-
gorithms for models composed of non-convex polygons, it is necessary to
decompose concave polygons into convex subparts, for instance by trian-
gulation. Algorithms for triangulating non-convex polygons can be found
in [77].

2.1.2 Polytopes

A polytope is the convex hull of a finite point set. The convex hull of a
finite pointset A = {ay, ... , a,} is the set of convex combinations of points
in A, defined by

n n
conv(A) = [Zliai : Zki =1,A > O].
i=1 i=1

The set of vertices of a polytope P = conv(X), denoted by vert(P), is the
smallest set Y C X, such that conv(Y) = P. A simplex is the convex hull
of an affinely independent set of points. Simplices of one, two, three, and
four vertices are respectively points, line segments, triangles, and tetrahe-
dra. The dimension of a polytope is the dimension of its affine hull. The set
of two- and three-dimensional polytopes is respectively the set of convex
polygons and the set of convex polyhedra.

In most cases, we will use a list of vertices as a basic representation for
polytopes. However, a polytope may also be represented as the intersec-
tion of a finite set of closed halfspaces. In fact, any object that is a bounded
intersection of a finite set of closed halfspaces is a polytope [48]. According
to Euler’s formula, the minimum number of halfspaces that are required for
representing a given polytope is roughly linear in the number of vertices
of the polytope [80]. _

In some applications, representing a polytope by a collection of half-
spaces is more convenient than using a vertex representation. For instance,
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polytope types that are applied as bounding volumes, such as discrete-
orientation polytopes, rely on a halfspace representation. A discrete-
orientation polytope (DOP) is the intersection of a fixed number of slabs.
A slab is the intersection of a pair of oppositely oriented halfspaces, i.e., a
region of space bounded by a pair of parallel planes. Each slab is oriented
according to a fixed axis relative to the objects coordinate system. For each
DOP we use the same set of axes, hence, the description of the axes is not
part of a DOP’s representation.

A k-DOP is the intersection of k slabs.! Ford,, ..., dg, a set of axes, we
define the k-DOP represented by extents f; and n;, as the point set

xeR*: 8, <d;-x<un,fori=1,... k.

Due to their small storage requirements (2k scalars), k-DOPs are well-
suited for use as a bounding volume.

A 3-DOP is better known as a parallelepiped, or simply box. Boxes
may alternatively be represented by a center point ¢ and extent vector n;,
defining the point set

xeR:|d;-(x—¢)| <m,fori=1,23},

which is a more convenient representation for some operations.

A feature? of a polytope is the intersection of the polytope with a sup-
porting plane. The features of zero, one, and two dimensions are called
vertices, edges, and facets, respectively. A boundary representation of a
polytope is the set of its features together with its incidence relation. The
boundary representation of a polygon is simply the chain of its edges. A
polyhedron’s boundary representation has a planar-graph topology. We
will describe a number of data structures that can be used to represent the
boundary of a polyhedron. For a more thorough discussion of the repre-
sentation of polyhedron boundaries, the reader is referred to [57].

The best-known data structure for representing the boundary of poly-
hedron is Baumgart's winged-edge structure [7]. Often, we do not require
a complete representation of the boundary, but are only interested in the
adjacency graph of the polytope’s vertices. In these cases, we may use a
simplified variant of the winged-edge structure, in which the references
to the adjacent facets of each edge are removed. This structure is better
known as doubly-connected edge list (DCEL) [80].

In contrast with [59], we count the number of slabs rather than the number of half-
spaces.

’In geometry literature the common term is face. However, we avoid using this term,
since in computer graphics texts, face is a synonym for polygon.
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In winged-edge-type structures, a node represents an undirected edge
in the vertex adjacency graph. This leads to inefficient case distinction
in graph traversals, since it is necessary to determine the orientation of
each edge traversed in order to find the proper successor. This problem is
solved in the halfedge structure, in which each undirected edge is repre-
sented by a pair of directed edges [57].

In computer animation, the boundaries of polyhedra are often topo-
logically invariant. Hence, we do not rely on efficient operations for mod-
ifying a boundary representation. In these cases, the simplest representa-
tion of the vertex adjacency graph, is often the best. For each vertex, we
maintain a list (array) of pointers (indices) to its neighboring vertices. In
this way, an edge is represented by two list entries corresponding to the
edges endpoints. Hence, this representation requires storage that is linear
in the number of edges, as is the case for the other boundary representa-
tion structures we have mentioned.

2.1.3 Quadrics

A quadric is an object that has quadratic surface elements. Quadrics are
considered solids rather than surfaces, i.e., the interior is part of the ob-
ject. We consider convex quadrics, such as spheres, capped cones, and
capped cylinders, as primitives. Although for interactive visualization,
these shapes are often represented by convex polyhedra, it is possible, and
usually more efficient and accurate to use their exact quadric representa-
tion for intersection testing, as we will discover in Chapter 4.

A sphere is represented by a center point ¢ and a radius p. A cone is
represented by a center point ¢ (halfway between the apex and the base),
a unit vector u that spans its central axis, and two positive scalars 5 and p
which are its height and its radius at the base. A cylinder is represented
by a center point ¢, a unit vector u that spans its central axis, and and two
positive scalars n and p which are its height and radius. See Figure 2.3 for
a visual description of these primitives.

In VRML, the center point and central axis of the quadric and box
primitives is fixed and cannot be used as a shape parameter [8]. The local
origin and y-axis are taken to be, respectively, the center point and cen-
tral axis of the primitives. This convention does not restrict the set of ob-
jects that can be specified using the language, since the primitives may be
placed at arbitrary positions and orientations by applying affine transfor-
mations. In the following subsection, we further discuss the use of affine
transformations for building models.
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Figure 2.3: The three quadric primitives

2.1.4 The Scene Graph

So far, we discussed the different types of primitives that are commonly
used for building models. Here, we will examine how these shapes are
combined to create complex models.

Complex models are constructed in the first place by grouping primi-
tives. Several of these groupings may in turn be grouped to form higher-
level groupings. We thus get a hierarchical description of a model. The
object represented by a grouping of sub-objects is the union of the sub-
objects. Note that, contrary to CSG representations, we do not allow inter-
sections and set differences as operations on the objects in a grouping.

Furthermore, we allow objects in a model to be defined in their own
local coordinate system relative to the coordinate system of the model.
A coordinate system is defined by the directions and scales of the three
axes and the position of the origin. The common way to represent a lo-
cal coordinate system relative to a reference coordinate system is as an
affine transformation. An affine transformation is a mapping of the form
T(x) = Bx + ¢, where B is a 3 x 3 matrix, defining the linear component,
and ¢ the translation of the transformation. The columns of B are the vec-
tors spanning the local coordinate axes relative to the reference coordinate
system, and the point ¢ is the position of the local origin in reference co-
ordinates. It can be seen that, for a point x in local coordinates, T(x) will
give us the reference coordinates of the point. See Appendix A for details
on affine transformations and coordinate systems.
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Affine transformations provide us with a powerful mechanism for cre-
ating models. We may define a shape in its local coordinate system and
use 1t to create multiple objects, each object being the result of a different
placement of the shape’s local coordinate system. In this way, we may use
the same shape to create objects at different positions, orientations and
scalings.

The structure we get using these construction methods is called a scene
graph. A scene graph is a directed acyclic graph (DAG), i.e., a tree-like
structure in which a single node may have multiple parents. The structure
has two types of internal nodes: grouping nodes and transform nodes. A
grouping node simply combines a number of sub-graphs. A transform
node defines a new local coordinate system for its descendants relative
the current coordinate system. The coordinate system corresponding to
the root of a scene graph is the world coordinate system. Hence, we find
the local coordinate system of a primitive in the graph relative to the world
coordinate system to be the concatenation of the transformations along the
root path of the primitive.

2.2 Animation

Animation adds a time parameter to the object representation, i.e., the set
of points that comprise an object represented by a node in the scene graph
is a function of time. We refer to the object represented by a node at a given
instance of time ¢ as the configuration of the node at time ¢.

We formally define the term collision as a state at an instance of time in
which the configurations of two nodes intersect. This definition is mean-
ingful only for nodes that lie on different root paths, since otherwise the
configurations would trivially intersect at any time. Here, two objects A
and B intersect if AN B # @. Hence, since objects are closed, a pair of
objects in contact are considered intersecting.

Next, we will discuss the different types of motion that may be used to
animate a model.

2.2.1 Motion

Animation is created by making some or all the components of a model
time-dependent. We concentrate on model changes over time, that affect
the geometric attributes only. We discern two types of motion correspond-
ing to the different node types in a scene graph:
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1. The most common way to animate a model is by altering the trans-
formations in the transform nodes of the scene graph. We will re-
fer to this type of motion as change of placement. The placement
changes are the result of translations, rotations, and nonuniform
scalings on (part of) the model. Most commonly used are rigid mo-
tions, i.e., transformations that use translations and rotations only. In
kinematics, the rigid motions of parts of the model are usually con-
strained in one or more degrees of freedom in order to create joints.
For instance, the knees of a walking figure have one rotational de-
gree of freedom. Models that are animated by motion of joints are
referred to as articulated models.

2. Animation may also be created by changing the geometries of the
primitive shapes. This type of motion is called deformation. This is
most commonly done for objects represented by polytopes or poly-
gon meshes. Here, the positions of the vertices of the polytopes
or polygons are time-dependent. Deformations may be applied to
simulate for instance fluids, cloths, or skin.

2.2.2 Time

In the real world time is assumed to be continuous, i.e., the time interval
in-between two consecutive events can be arbitrary short. This suggests
that we need to solve the collision detection problem as an intersection
test in continuous four-dimensional space (space-time). However, such an
approach leads to practical difficulties.

Solutions to the four-dimensional intersection detection problem have
been presented for a restricted class of objects and motions [11, 12, 15, 81].
However, in many common cases, the four-dimensional object that is
swept by a three-dimensional object in motion is often too complicated to
make a four-dimensional intersection test computationally feasible at in-
teractive rates. For instance, it is hard to test the screw-like volume swept
by a spinning object, such as a propellor or a fan, for intersection with
another moving object’s swept volume.

Hence, for interactive simulations, we opt for a motion description
given by discretely sampled configurations at fixed time intervals. These
configurations of a model at discrete time steps are referred to as frames,
as used in the context of computer animation. Models are tested for inter-
ference for these fixed frames only. Collisions that occur in-between two
discrete time steps are therefore not detected. Testing intersections for dis-
crete frames only may result in collisions being detected too late or not at



18 CHAPTER 2. CONCEPTS

—\

(a) Too late (b) Missed

Figure 2.4: Problems when detecting collisions at discrete time steps

all, as illustrated in Figure 2.4.

Missing collision may result in undesired behavior, such as high-speed
objects traversing through obstacles. For instance, a fired bullet may pass
through a wall without colliding with the wall. We may deal with this
problem by encapsulating two consecutive configurations of a model by
a bounding volume, thus approximating the volume swept by the model
over one time step. By testing these bounding volumes for intersection
with obstacles, we can detect high-speed objects passing through these ob-
stacles. Another solution is to stretch the model by a nonuniform scaling
along the direction of the velocity, such that two consecutive configur-
ations of the model overlap. See Figure 2.5 for an illustration of these
solutions.

2.3 Response

Obviously, the reason for performing collision detection is to have some
type of response to a collision. For some forms of collision response, no
additional data concerning the colliding objects are needed. For instance,
- most flight simulators respond to a plane crash by ending the simulation,
and displaying a message.

However, for most forms of collision response, additional data are used
for response computations. For instance, in VR applications the exact spot
where the simulated hand of the operator touches an objects is often re-
- quired for collision response. Here, a common point of the object and the
hand is the collision data.
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Figure 2.5: Solutions to avoid missing collisions
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Figure 2.6: A contact plane defined by a contact point p and normal n

In the application of collision detection to physics-based simulations,
it is necessary to have (an approximation of) a contact plane and a contact
point for a colliding pair of objects in order to compute the reaction forces
that resolve the collision. A contact point is a point where the objects
first touch, and a contact plane is a plane that passes through the contact
point and is oriented such that the intersections of the objects with an &-
neighborhood of any contact point lie on different sides of the plane, as
depicted in Figure 2.6. It is assumed that by choosing ¢ small enough, each
object’s intersection with the s-neighborhood can be regarded as a convex
set, hence, a contact plane always exists. Note that neither a contact point
nor a contact plane are necessarily unique.

Since collision detection is performed for discrete frames only, a pair
of colliding objects will overlap each other to some extent at the moment
that a collision is detected. From a configuration of intersecting objects it
is rather difficult to estimate a contact plane and a contact point.

We may approximate the orientation of the plane using the minimum
translational distance (MTD) between the objects [14], which is the length
of the shortest translation that results in the objects being in contact. The
direction of this translation can be used as an approximation of the contact
plane’s normal. However, for some configurations we may get undesired
results, as shown in Figure 2.7. Here, the minimum translation is ortho-
gonal to the normal of the actual contact plane for the rectangle example.

Better results are achieved by using the previous frame, i.e., the frame
prior to the collision, for estimating a contact plane. For this purpose, a
pair of closest points of the objects in the previous frame are determined.
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(a) Fairly accurate (b) Inaccurate

Figure 2.7: Using the minimum translational distance for approximating a
contact plane

A pair of closest points is pair of points, one from each object, such that
their distance is the shortest of all point pairs. We use the difference of
the closest points as the normal of the contact plane, which is a fairly ac-
curate approximation of an actual contact plane’s normal, as depicted in
Figure 2.8. The closest points may be used as the points of the objects
on which the reaction forces are applied. The reaction forces are directed
along the normal of the contact plane, which is determined by the vector
difference of the closest points. A discussion of methods used for physics-
based simulations falls outside the scope of this thesis. The reader is re-
ferred to [6] for a thorough treatment of techniques used for interactive
dynamics simulations.

2.4 Efficiency

In interactive computer animation, the available computational time per
frame for collision detection is constrained by the desired frame rate. In
order to experience real-time response, the frame rate needs to be at least
in the order of 25 frames per second. We see that this constraint imposes
quite strict demands upon the performance of the used collision detection
methods.

Often, we observe a trade-off of computational cost against storage
usage, for instance, when preprocessing or caching is done. Although in
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Figure 2.8: For a pair of closest points p and q in the frame prior to a
collision, the difference p — q is an accurate approximation of a contact
plane’s orientation.

many cases, usage of space is less critical than usage of time, the amount
of available storage space is nevertheless limited. Therefore, we also have
to take the amount of used storage space into account in choosing a colli-
sion detection method. In this section, we discuss a number of efficiency
considerations that may govern the choice of algorithm used for collision
detection.

2.4.1 Frame Coherence

Under the assumption that the changes per frame are small, i.e. the mo-
tion is smooth, the computations for detecting collisions are repeated for
mostly the same input values. By caching and reuse of earlier computa-
tions the computation time per frame may be greatly reduced. The mea-
sure of reusability of computations from earlier frames is called frame co-
herence.

Witnesses play an important role in the exploitation of frame coher-
ence. A witness is some piece of data pertaining to the current configur-
ation of a pair of objects, that can be used for quickly answering future
intersection queries on the objects, provided that the configuration does
not change much. A witness may be either positive, i.e., the objects in-
tersect, or negative, i.e., the objects are disjoint. An example of a positive
witness is a common point of both objects. For convex objects, we may
use a separating plane, or a separating axis, i.e., an axis orthogonal to a
separating plane, as a negative witness. A closest point pair may be used
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both as positive and negative witness. We will discuss the computation of
these witnesses for convex objects in Chapter 4.

The use of cached witnesses is based on the idea that testing whether a
witness from a previous frame is still valid in the current frame is cheaper
than repeating the witness computation from scratch for the current frame.
For instance, a point containment test is for many object types cheaper
than an object intersection test. Therefore, if a witness from a previous
frame is likely to be a witness in the current frame, as a result of a high de-
gree of frame coherence, we may save ourselves some time by first testing
the validity of the cached witness in the current frame. Only if the witness
test fails, then an expensive intersection test needs to be performed, which
may result in a new witness being computed.

Besides the cost of testing their validity, some additional overhead cost
are involved when using witnesses. The witnesses need to be cached in
a data structure, and retrieved in the following frames, which obviously
takes some time. Therefore, it is wise to cache witnesses only if they have a
high probability of being valid witnesses in following frames. In computer
animation, collisions are usually resolved rather than maintained. Hence,
in this context, negative witnesses are more useful than positive witnesses,
since most object pairs will be disjoint most of the time.

2.4.2 Geometric Coherence

Another type of coherence, which we will refer to as geometric coherence,
may also be exploited for improving the performance of collision detec-
tion. Geometric coherence is the quality of a complex model that expresses
the degree in which the objects in the model can be ordered geometrically,
i.e., according to the regions of space that they occupy. It is hard to give a
formal definition of the notion of geometric coherence, since the notion is
strongly related to the method of ordering that is applied. However, we
shall try to give a formal definition that is more or less independent of a
specific ordering method.

Geometric coherence of a complex model is best described as the de-
gree of separability of the set of objects in the model. Two objects are sepa-
rable if the regions occupied by the objects, defined by their convex hulls,
are disjoint. The degree of separability decreases if the degree of over-
lap among the convex hulls increases. Figure 2.9 shows two sets of curve
segments, one of which has very little, and the other a lot of geometric
coherence.

It may sound awkward that a model in which there is more space in-
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(a) Little coherence (b) Much coherence

Figure 2.9: The amount of geometric coherence in a set of curve segments

between the components, has more geometric coherence than a model in
which all objects are interlinked. We should keep in mind that geometric
coherence has to do with the degree in which a location in space can be
associated with one designated object, rather than the degree in which
objects cohere.

A bounding volume is a simple primitive that encloses a more com-
plex shape, and for which a cheap intersection test exists. If the probability
that the bounding volumes of the objects intersect is low, i.e., there is a lot
of geometric coherence among the objects in a model, we may save our-
selves some time by first testing the bounding volumes for intersection.
Only for the objects whose bounding volumes intersect, we need to per-
form an exact and expensive intersection test. Again, the use of bounding
volumes requires some additional storage and computational cost, so per-
formance is gained only if the bounding volumes have a high probability
of being disjoint.

2.4.3 Average Time

In order to attain the best average performance by exploiting coherence,
collision detection is typically done as a sequence of intersection tests of
increasing computational cost. Except for the last test, each test estab-
lishes an answer to the intersection query only for a portion of all possible
configurations of objects. The last test must return an answer for all the
remaining configurations. Here, an answer may be either positive or neg-
ative. A test in the sequence needs to be performed only if the previous
test failed, i.e., it did not establish an answer to the query.
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For instance, an intersection test of two geometric objects may consist
of a bounding volume test and an exact intersection test. If the bounding
volumes of the two objects do not intersect then a negative answer is re-
turned, thus, the bounding volume test is successful. Otherwise, we need
to do an exact intersection test.

Let §1,..., S, be a sequence of intersection tests that is used for an-
swering an intersection query, and let f; represent the event that test S;
fails, and C;, the average time necessary for performing S;. We can define
the average time of an intersection query as

Tog =) _ PLfi+ - fi-1]Ci
i=1

where P[f --- fi_1] is the probability of failure of tests Sj, ..., S;_; for a
given input domain. Often, C; depends on the size of the input. For in-
stance, testing whether two polygons intersect takes an amount of time
that is linear in the total number of vertices of the two polygons (cf. Chap-
ter 3). Hence, the average time for performing an intersection query is
often a function of the input size.

It is our goal to design intersection queries as a sequence of tests for
which the average time is minimized for a realistic input domain. Since
we will be performing a lot of these intersection queries per frame, we
will attain the best performance by keeping the average query cost low. It
can be seen that the best times are gained by using tests S; for which both
P[filfi--- fi-1], i.e., the probability of the test failing under the condition
that the former tests failed, and C; are small.

The next question to answer is how the values for the probabilities and
cost are determined. The cost values may be found by counting the num-
ber of primitive operations in a single intersection test. Primitive opera-
tions are for instance arithmetic operations (additions, subtractions, mul-
tiplications, and divisions), branch instructions, and memory accesses. We
often express the cost of a test routine by the number of arithmetic opera-
tions only.

For more complex intersection tests that depend on the input size, ex-
pressing the cost in primitive operations is often not feasible. In these
cases, we determine the cost empirically. For a given implementation and
input size, the cost is measured by running a large number of tests for a
representative input domain using a profiling tool, such as gprof [32]. Of
course, the measured values are only valid for the given implementation,
input size, and testing platform, and thus, we need to apply our findings
with some restrictions.



26 CHAPTER 2. CONCEPTS

The probability values are also best found empirically by running a
large number of tests. Although a field of probability theory called stochas-
tic geometry [90] can be applied for determining these values for some con-
figurations of objects, the majority of object types and input domains are
too complex in order for an analytic approach to be feasible. The proba-
bility values can be found simply by counting the number of times each
intersection test is called. For this purpose, we may also use a profiling
tool.



Chapter 3

Polygons

“Elementary, my dear Watson.”
Sherlock Holmes

Polygons are currently the most commonly used modeling primitives in
3D computer animation. Hence, finding collision detection methods for
polygonal objects is our first concern. In this chapter, we discuss a num-
ber of intersection tests on non-convex polygons. We will present new
algorithms for detecting and computing an intersection between a pair of
polygons, after which we discuss algorithms for testing the intersection of
a polygon with some other primitives. Let us first examine the problem of
detecting intersections of general non-convex polyhedra in greater detail.

3.1 Colliding Polyhedra

A polyhedron is an object that has a polyhedral surface as boundary. For
the purpose of visualization, a polyhedron is usually represented by a col-
lection of polygons. In Chapter 4, we will discuss algorithms for collision
detection of convex polyhedra. Here, we will look into the problem of
detecting collisions between non-convex polyhedra.

3.1.1 Convex Decomposition

One way to tackle the problem is by decomposing non-convex polyhedra
into convex subparts, and use an algorithm for convex polyhedra on the
subparts. However, convex decomposition of general polyhedra is more
difficult than its two-dimensional counterpart, convex decomposition of

27
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N

Covering Partitioning BSP

Figure 3.1: Convex decomposition methods

polygons. In particular, for some polyhedra it is impossible to be tetra-
hedralized, i.e., partitioned into tetrahedra, such that each tetrahedron’s
vertices are vertices of the polyhedron. In fact, polyhedra exist which re-
quire £ (n%) convex pieces in the best partitioning, where # is the number
of vertices [76].

An easy implementable partitioning method is binary space partition-
ing (BSP) [95]. A BSP is constructed by recursively subdividing a space
into convex regions, called cells, using well-chosen planes. By choosing
the partitioning planes from the set of supporting planes of the polyhe-
dron’s facets, a BSP can be formed such that the polyhedron is the union
of a subset of the BSP’s cells. A drawback of the BSP method is that it
often results in unnecessarily many components. We will further discuss
the use of BSPs for representing polyhedra in Chapter 5.

It is worth noting that, for the purpose of collision detection, it is not
necessary to partition the polyhedra. We may decompose a polyhedron
into overlapping pieces, as depicted in Figure 3.1. The question remains
unanswered whether this added freedom yields decompositions that have
significantly fewer components. Surprisingly little is found in literature on
this intriguing problem.

Convex decomposition is still an important research topic. Existing
partitioning methods often generate an unacceptable number of convex
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pieces (O(n?) for a polyhedron having n vertices), in order for a convex
component intersection approach to be useful.

3.1.2 Boundary Intersections

A more feasible approach is to focus on boundary intersections. Configur-
ations of colliding polyhedra can be classified in the following two cate-
gories:

L. The boundaries of the polyhedra intersect, i.e., there exists a pair of
intersecting polygons, one from each polyhedron.

2. One polyhedron is contained in the other polyhedron’s interior. In
this case the boundaries do not intersect. '

A basic strategy for finding an intersection between polyhedra is the fol-
lowing. First, test if a pair of polygons, one from each polyhedron, inter-
sect. If such a pair exists then the polyhedra intersect. Otherwise, test for
each polyhedron whether it contains a point from the other polyhedron. It
does not matter which point of a polyhedron is tested, since under the con-
dition that the boundaries do not intersect, it is necessary that if a point of
a polyhedron is contained in the other, then this polyhedron is completely
enclosed by the other polyhedron.

A point-in-polyhedron test can be done similar to its 2D variant, a
point-in-polygon test. A ray with the query point as its starting point ex-
tending infinitely in one direction crosses the boundary an even number
of times if the query point lies outside and an odd number of times if the
query point lies inside the polyhedron. Hence, by counting the number of
times the ray crosses the boundary we can classify the location of a given
a query point with respect to a polyhedron.

Although rather straightforward in theory, this method is quite tricky
in practice. Due to precision problems, degenerate cases, where the ray
passes (nearly) through an edge of the boundary, may cause incorrect re-
sults. O” Rourke presents a robust implementation of the ray intersection
count in [77]. He uses an approach in which a randomly generated ray
is used. If the chosen ray happens to result in a degeneracy, then another
random ray is tried. This process is repeated until a ray is found that does
not result in a degeneracy.

In computer animation, a point containment test is often not necessary.
If objects move with a limited velocity, and if they have a large enough
size, it will be impossible for a pair of objects to travel in one frame from a
disjoint configuration to a configuration in which one object is enclosed by
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the other. In these cases, a boundary intersection must occur before one of
the objects is enclosed by the other. By immediately resolving any collision
occurring, a pair of objects will not get into a containment configuration.
Hence, it is unnecessary to test for such configurations.

3.2 Polygon-Polygon Intersections

As we saw, testing for the intersection of a pair of polyhedral surfaces
involves testing pairs of polygons for intersection. In order to reduce
the number of polygon-polygon intersection tests we can apply a spatial
data structure. In Chapter 5, we will discuss a number of data structures
that may be used for this purpose. For now, let us focus on the polygon-
polygon intersection test.

In this section we discuss two algorithm for testing the intersection
of a pair of non-convex polygons in three-dimensional space. Both algo-
rithms use a plane equation of the polygons’ supporting planes. When
transforming a polygon to another coordinate system, it is usually faster
to transform its plane equation, rather than recompute it for the new coor-
dinates. A plane equation can be transformed using the method described
in Appendix A.

3.2.1 A Straightforward Approach

A common way of detecting an intersection of two polygons is testing each
edge of the first polygon against the second polygon for intersection and
vice versa [10]. Clearly, this suffices to find an intersection, since for a pair
of intersecting polygons at least one polygon has an edge that intersects
the other. An edge-polygon intersection test involves the following steps.
First, the point of intersection of the edge with the polygon’s supporting
plane is computed, after which this point is tested for containment in the
polygon.

Finding the point of intersection of an edge and a plane involves com-
puting the signed distances of the edge’s endpoints. For a plane

Hmn 8 ={xeR¥:n-x+8=0)}

where ||n|| = 1, the signed distance of a point p to this planeis n-p+§. Note
that for the correctness of the following computations, it is not necessary
that |in|| = 1. The length of n needs to be one only if we want the absolute
value of the signed distance to be equal to the actual Euclidean distance to
the plane.
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Figure 3.2: Computing the point of intersection of an edge and a polygon’s
supporting plane

Let o and B be the signed distances of the endpoints of the edge. If «
and B have the same sign, i.e. the endpoints lie on the same side of the
plane, then the edge does not intersect the polygon and can be rejected. If
a and B have opposite signs, then the intersection point of the edge and
the plane is the point p+A(q—p), where A = a/(a—f). Figure 3.2 illustrates
this operation.

The next step after computing the point of intersection of the edge and
the supporting plane of the polygon, is testing whether this point is con-
tained in the polygon. Since this is a 2D problem, we need to project all
points onto a plane, i.e., we need to drop (ignore) a coordinate in the 3D
coordinates of the intersection point and the vertices of the polygon. The
safest coordinate axis to drop is the one whose angle with the normal of
the polygon’s supporting plane is the smallest. Since the projection of the
polygon onto the plane orthogonal to this axis has the largest area of all co-
ordinate axes, we avoid the problem of the projection of the polygon being
a line segment (area is zero) [41]. The coordinate axis whose angle with the
normal of the polygon’s supporting plane is the smallest corresponds with
the coordinate of the plane’s normal that has the largest absolute value of
the three coordinate values. The axis is referred to as the closest axis to the
plane normal.

A discussion of a number of algorithms for point-in-polygon tests is
presented by Haines in [50]. When preprocessing of the polygons is not
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allowed, the best choice of a point-in-polygon test for non-convex poly-
gons is the crossings test. The crossings test counts the number of times
a ray, that originates from the query point, crosses boundary of the poly-
gon. If the number of crossings is odd then the query point lies inside
the polygon, otherwise, it lies outside the polygon. Haines includes a fast
and robust implementation of this algorithm in the article. This point-in-
polygon test takes linear time in the number of vertices.

Using this approach, a polygon-polygon intersection test takes O (n?)
time in the worst case for a pair of polygons with n vertices each, since
each edge of each polygon may intersect the other polygon’s supporting
plane. This bound may be reduced to O(nlogn), by first computing all
intersection points of one polygon’s edges with the other polygon’s sup-
porting plane, and then performing all point-in-polygon tests at once, by
applying a plane-sweep algorithm. Yet, in the following text, we present
a new approach for polygon-polygon intersection testing, which yields a
worst-case O(n) time algorithm.

3.2.2 A New Approach

Our approach is based on the following idea. A pair of polygons intersect
iff the intersections of each polygon and the other polygon’s supporting
plane overlap. The intersection of a non-convex polygon and a plane is
a collection of collinear line segments. We simply ignore intersections of
coplanar polygons, i.e., we assume an infinitesimal distance between the
parallel polygons. Ignoring this case is not harmful for detecting collisions
between the boundaries of a pair of polyhedra, since if two coplanar poly-
gons from a pair of polyhedra intersect, then other intersecting pairs of
polygons must exist that are not coplanar.

The line segments for both polygons coincide with the line of intersec-
tion of the polygons’ supporting planes, as depicted in Figure 3.3. We see
that for a pair of intersecting polygons, one or more pairs of line segments
overlap.

The intersection of a non-convex polygon and a plane is computed
using a polygon clipping technique [92, 42]. Using the edge-plane intersec-
tion we saw earlier, we find all intersection points of polygon edges with
the plane. These intersection points are the endpoints of the line segments.
The endpoints are computed in the order in which they appear along the
boundary, as can be seen in Figure 3.4. In order to find the intersection line
segments we need to sort the endpoints along the line of intersection.

The direction of the line of intersection can be computed by taking the
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Figure 3.3: The intersection of a pair of polygons

cross product of the normals of the polygons’ supporting planes. A se-
quence of points is sorted along this line in the following way. First, we
determine the closest axis to the direction of the line of intersection. It is
easier to ‘project’ a three-dimensional point onto a coordinate axis than
onto an arbitrary axis, since for a coordinate axis the projection is simply
the corresponding coordinate of the point. We choose the closest axis to
the direction of the line of intersection, in order to avoid the case where
the coordinate axis is perpendicular to the line of intersection. Sorting the
endpoints by their coordinate on an axis that is perpendicular to the line
of intersection will give an incorrect result, since all endpoints have the
same coordinate for this axis.

Next, the endpoints are sorted according to their coordinate values on
this axis. For this purpose, we can apply a general sorting algorithm,
such as Quicksort, which has O (nlogn) average time complexity for a se-
quence of n points. However, for this particular sorting problem, which
is referred to as Jordan sorting, we can find an algorithm with a better
time-complexity. Jordan sorting is the problem of sorting a sequence of
intersection points of a Jordan curve with an axis, given in the order in
which they occur along the curve. Clearly, this is the case here, since the
boundary of a simple polygon is a Jordan curve. It has been shown that
Jordan sorting has only a linear time complexity [53, 36]. However, these
algorithms require rather sophisticated data structures. Therefore, we re-
gard it unlikely that Jordan sorting outperforms the Quicksort routine for
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Figure 3.4: The intersection of a non-convex polygon and a plane

the input sizes that we are interested in. : _

After sorting the endpoints, we have a representation of the inter-
section line segments in the order in which they occur along the closest
axis. Let conv{sy;, sy;+1; and conv{ty j»t2j+1} be the sorted sequences of
intersection line segments of the two polygons, and let [0y, 02;41] and
[t2j, T2j+1] be their respective projections the closest axis, where 0 < i < [
and 0 < j < m. Overlap among the segments is found by simulta-
neously scanning the sorted sequences of endpoints for both polygons.
Two segments overlap iff their projections onto the closest axis overlap.
More precisely, the i-th segment of s overlaps the j-th segment of t iff
[02i, 02i 411N [12), T2 1] # 0, i€, 02 < 1j41 and 72 < 07;41. Furthermore,
assume without loss of generality that 09,11 < 1) j- Then, the i-th segment
of s does not overlap the k-th segment of t, where k > j. This property
is exploited in Algorithm 3.1 for detecting whether two sequences of line
segments overlap in O(l + m) time. For a pair of polygons, each having n
vertices, we have ! < n and m < n, since each edge contributes at most one
endpoint. Hence, Algorithm 3.1 runs in O (n) time. ‘

Let us summarize the complete algorithm for testing the intersection
of a pair of non-convex polygons, each having n vertices.

1. First, the direction of the line of intersection of the polygon’s sup-
porting planes is computed. If the planes are parallel, then false is
returned. We simply ignore the degenerate case where the planes
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Algorithm 3.1 Detecting overlap in two sequences of line segments

i:=0;

Jj=0;

while i <land j < m do begin
if 02i4+1 < T2 theni:=i+1
else if Tj+1 < 0 then j:=j+1
else return true

end;

return false

coincide, assuming an infinitesimal distance between the planes.

2. Next, for each polygon, the intersection points of its edges with the
other polygon’s supporting plane are computed and stored in a list.
This takes O(n) time.

3. The lists of intersection points are sorted along the coordinate axis
that is closest to the direction of the line of intersection. This takes
O (n) time using Jordan sorting.

4. Finally, the lists are scanned using Algorithm 3.1 in order to detect a
pair of overlapping segments. This operation also takes O (n) time.

We see that the complete algorithm has a worst-case time-complexity of
O(n). At this level though, asymptotic worst-case performance bounds
are mainly of theoretical interest.

In practice, we will in most cases perform a bounding box test before
testing the polygons for intersection, in which case the performance of
the two approaches differs only slightly. In our experiments, we found
that the second approach using Quicksort is only 10% faster than the first
approach in the cases where the bounding boxes of the polygons intersect.
The better performance is due to the fact that with the second approach,
an early exit is possible if one of the polygons does not intersect the other
polygon’s supporting plane, whereas the first approach may still perform
a number of point-in-polygon tests.

As a conclusion, we present an algorithm for computing the intersec-
tion of a pair of non-convex polygons, which is a modification of the de-
tection algorithm. The main difference with intersection detection is that
for intersection computation we need to have all intersecting pairs of line



36 CHAPTER 3. POLYGONS

S S
| 52 353 :ﬁ :55 S 8
th |t t t; te L g

Figure 3.5: Intersection of two line segment sequences

segments. Note that a single segment from one polygon may overlap mul-
tiple segments of the other polygon, as can be seen in Figure 3.5. As soon
as a pair of overlapping segments is found the segment of intersection of
these segments is reported. After reporting an overlapping pair of seg-
ments, we examine the next pair of segments by progressing in one of the
segment sequences. Assume without loss of generality that 0711 < 7341
Since the sequences are sorted we know that the i-th segment in s does not
overlap any of the k-th segments of t for k > j. Hence, we discard the i-th
segment of s from consideration, and progress to the next segment in s. See
Algorithm 3.2 for a description of the intersection computation algorithm
in pseudo-code. As the detection algorithm, the intersection computation
algorithm runs also in O (I + m) time, which is O (n) for a pair of polygons
of n vertices each.

Algorithm 3.2 Computing the intersection of two sequences of line seg-
ments

i:=0;
J:=0;
while i < land j < m do begin
if 02i41 < T2j theni:=i+1
else if T2j+1 < 07 then j =j+1
else begin
b:=ifoy; > T then s,;else 6,
e:=ifoyq < T2 +1 then s;;else 415
“report the line segment connecting b and e”;
if o911 < Tj+1theni:=i+ lelse j:=j+1
end
end
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We briefly discuss some alternative algorithms for polygon-polygon
intersection testing. The algorithms we have seen so far use a representa-
tion of the supporting plane. Since a plane equation is represented using
only four scalars, the additional storage that is needed for representing the
plane equation is in most cases acceptable. However, transformations on
polygons, which are needed for getting the coordinates of the polygons
relative to the coordinate system of reference, require some additional
overhead if plane equation are involved. See Appendix A for details on
how to compute the image of a plane equation under affine transforma-
tions.

Hence, using an intersection testing algorithm that does not require
a representation of the plane equation might be a valid option in some
- applications. In [96] Thomas and Torras present a variant of our first ap-
proach that does not require a plane representation. In their algorithm,
the point of intersection of an edge and a plane is not computed. Instead,
an edge-polygon test is performed using only dot and cross products, and
sign comparisons. Held proposed a similar approach in [52] for testing the
intersection of an edge and a triangle.

The second approach that we saw can be simplified for convex poly-
gons. Since the intersection of a convex polygon and a plane is a single line
segment, sorting of intersection points is reduced to a single comparison
and swap. Moller exploits this property in [67] in which he presents an
algorithm for testing the intersection of triangles, although his algorithm
is readily applicable to convex polygons in general. We will see other in-
tersection detection algorithms for convex polygons in Chapter 4.

3.3 Polygon-Volume Intersections

In some cases we need to test the intersection of a polygon and a convex
primitive volume. For instance, in virtual environment simulations, such
as performed by VRML browsers [8], the avatar is usually represented by a
volume, such as a box, a cylinder, or a sphere, and the scene is usually rep-
resented by polyhedra and polygonal surfaces. Here, collision handling is
necessary in order to prevent the avatar from walking through obstacles,
such as walls. Another example is view frustum culling, which is used to
improve the rendering performance of a 3D graphics engine by processing
only those polygons in the scene that intersect with the camera’s field of
view. Closer to our problem domain, polygon-volume intersection tests
are useful in intersection testing between complex polygonal models for
culling the polygons of one model that do not intersect with a bounding
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volume of the other model.
The basic strategy for polygon-volume intersection testing is described
as follows:

1. If the polygon's supporting plane and the volume do not intersect,
then return false. Otherwise,

2. if a vertex of the polygon is contained in the volume, then return
true. Otherwise,

3. if an edge of the polygon intersects the volume, then return true.
Otherwise,

4. if a point common to both the volume and the polygon’s support-
ing plane is contained in the polygon, then return true. Otherwise,
return false.

This strategy can be used for testing the intersection of a polygon with
any object type, and is most useful for intersection tests of a polygon with
a primitive volume, such as a sphere or a box, since for these types of ob-
jects the individual tests in the strategy are quite elementary. For polygon-
polygon intersection testing we found strategies that exploit the symme-
try of this problem to be more effective. Note that the first two tests in
this algorithm are not necessary for the correctness of the operation, how-
ever they contribute to the performance of the test to a large extent. Recall
that it is our aim to come up with algorithms that have good average per-
formance. In this light, the two tests are quite useful, since they give us a
quick answer for the majority of intersection tests and are relatively cheap.

We will show how to apply this basic strategy to polygon-sphere and
polygon-box intersection testing. For other primitives, such as cylinders
and cones, the algorithms are similar to the polygon-sphere intersection
test. We discuss the polygon-box intersection test separately, since it al-
lows further optimizations. Polygon-box intersection algorithms that fol-
low this strategy are found in [98, 47].

3.3.1 Polygon-Sphere Intersection Testing

Deciding whether a sphere intersects a plane is quite simple. The sphere
intersects the plane if the distance of its center to the plane is at most its
radius. Let ¢ be the center of the sphere and H(n, ) the polygon’s sup-
porting plane. Then, the distance of ¢ to the plane is |n - ¢ 4 §|/|n||. The
point containment and segment intersection test are performed similarly
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Figure 3.6: Finding a point p common to a sphere and a plane

by computing the distance from the vertex or edge to the center of the
sphere.

For the final test a common point to both the plane and the sphere
needs to be found. As common point we take the center of the sphere pro-
jected onto the plane, i.e., the intersection point of the plane and the line
orthogonal to the plane passing through the center. This point is denoted
by p in Figure 3.6. It can be seen that under the assumption that the plane
intersects the sphere, this point is indeed contained in both the plane and
the sphere. Finally, the intersection point is tested for containment in the
polygon, for which we use the point-in-polygon test we saw in the context
of edge-polygon intersection testing.

3.3.2 Polygon-Box Intersection Testing

For polygon-box intersection testing we use the same basic strategy, and
apply a number of optimizations in order to further improve performance.
We assume the box is aligned to the coordinate system of reference. Let ¢
be the center, and e = (11, 12, 13)T, the extent vector of the box, and let
H (n, 8) be the polygon’s supporting plane, and assume |n|| = 1. We test
whether the plane intersects the box as follows. The vertices of the box are
the points ¢ + (£n1, 12, £13)T. Hence, the projection of the box onto n
is the interval [n- ¢ — p,n - ¢ + p], where p = max{n - (&5, £n,, £n3)T).
We see that for n = (v, vy, 13)7, the value of p is vini] + (vama| + |vans].
See Figure 3.7 for a visualization of this projection. It can be seen that the
plane intersects the box iff the distance of the center to the plane, which is
In - ¢+ 6], is at most p.
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Figure 3.7: Testing the intersection of a box and a plane

For point containment and edge intersection testing we enter the realm
of line segment clipping for which a considerable amount of literature is
available (cf. [60, 33, 9, 29, 30]). In contrast with line clipping, where the
intersection needs to be computed, we only need to detect an intersec-
tion. Nevertheless, the algorithm we propose has a lot of similarities with
common line clipping algorithms. We borrow techniques from two pop-
ular line clippers: Cohen-Sutherland (CS) and Liang-Barsky (LB) [60, 33].
Originally, CS and LB were presented for clipping in 2D, however both
algorithms can be readily generalized to 3D. We will give brief description
of our algorithm. '

CS uses a classification of points according to the six planes support-
ing the facets of the box, each plane is oriented such that its normal is
pointing outward. The classification is represented by a six bit code, in
which each bit corresponds to a plane. The code is referred to as outcode.
A bit in the outcode is 1 if the point lies in the positive open halfspace of
the corresponding plane, and 0 otherwise. We see that any point that is
contained in the box is classified as 000000. Thus, the point containment
test in our basic polygon-volume strategy is performed simply by testing
whether the outcode of a vertex is zero. Furthermore, if the outcodes of the
edge’s endpoints contain the same bit, i.e., their bit-wise ‘and’ is nonzero,
the edge can be rejected, since the corresponding plane separates the edge
from the box. Assume that neither endpoint is contained in the box, and
their outcodes “and’ to zero. Then, we need to test whether the edge inter-
sects the box, as illustrated in Figure 3.8 in the 2D case.

For the edge-box test, the third test in our basic strategy is performed
using a technique from the LB parametric line clipping algorithm. In LB
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Figure 3.8: Edge-box intersections in Cohen-Sutherland line clipping

the parameters of the intersection points of the edge with the box planes
are computed. Let p and q be the endpoints of the edge. Then, an intersec-
tion point can be expressed as p + A(q — p), where A is its parameter. By
classifying the intersection point as ‘entering’ or ‘exiting’ we can decide
whether the edge penetrates the box. An intersection point is classified
as ‘entering’ if moving from p to q we go from the positive to the nega-
tive halfspace of the corresponding plane, and ‘exiting’ otherwise. It can
be seen that an edge intersects the box iff the largest parameter of an ‘en-
tering’ intersection point is at most the smallest parameter of an ‘exiting’
intersection point.

We will now explain why CS and LB make such a good team. First of
all, under the assumption that the outcodes of the endpoints ‘and’ to zero,
the 1" bits in both outcodes correspond to those planes for which intersec-
tion points need to be computed, since only for these bits the endpoints lie
in opposite halfspaces of the corresponding plane. Moreover, each inter-
section point corresponding to a bit in the outcode of p is ‘entering’, and
each intersection point corresponding to a bit in q’s outcode is ‘exiting’.
Hence, the edge intersects the box iff the largest parameter corresponding
to a bit in p’s outcode is at most the smallest parameter corresponding to a
bit in q’s outcode. We see how neatly LB benefits from the outcodes com-
puted by CS. Considering the long history of line clipping, it is remarkable
that a hybrid of CS and LB got published only recently [9]).

We have yet another use for the outcodes in our polygon-box intersec-
tion detection algorithm. In order to get a fast answer for our intersection
query, it is useful to test if all the polygons vertices lie in the positive half-
space of any of the six planes. For this purpose, we bit-wise ‘and’ the out-
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codes of all the vertices, and test whether the result is nonzero, in which
case we return false, and exit. The test is best done before the edge-box
tests, since it is fairly cheap and results in a rejection in a large number of
cases.

Finally, if none of these tests results in an answer, there is still a possi-
bility that the box intersects the interior of the polygon. This case is tested
by the fourth test in the basic strategy. In order to test this case, we com-
pute the intersection point of the polygon’s plane and the box diagonal
whose angle with the plane is largest, and check whether this point lies
inside the polygon.

The latter test is proposed by Green and Hatch in [47] as an improve-
ment over the test in the approach presented by Voorhies in [98]. The
approach presented in [47] differs from ours with respect to the edge-box
intersection test. In the approach by Green and Hatch an edge-box inter-
section is detected by testing whether the origin is contained in the Min-
kowski sum of the edge and the box. The Minkowski sum of a line seg-
ment and a box is a rhombic dodecahedron, which is a 6-DOP, according to
the definition in Chapter 2. The origin is tested for containment in the Min-
kowski sum by testing whether the origin lies in-between parallel planes
for each of the six plane orientations. This test is likely to be faster and
more robust than our CS-LB clipping test, since for the Green-Hatch ap-
proach there are no divisions necessary, whereas in the clipping approach
divisions are necessary for computing the line parameters. However, the
Green-Hatch approach does not allow common point computation in a
straightforward manner. Therefore, our CS-LB approach is the best choice
if a witness to an intersection of a polygon and a box is required. We will
see more on Minkowski-sum-based algorithms in Chapter 4.



Chapter 4

Convex Objects

“Just ask the axis.”
Jimi Hendrix

In this chapter we study a number of algorithms that exploit convexity.
The algorithms are characterized according to their witness types. We
will discuss intersection detection algorithms for finding either a common
point or a separating axis, and distance computation algorithms. Most of
the discussed distance algorithms can be tailored to return a closest point
pair. We conclude with a discussion of the Gilbert-Johnson-Keerthi dis-
tance algorithm (GJK), for which we present an implementation that has
improved performance, robustness, and versatility over earlier implemen-
tations. We will show how GJK can be tailored to efficiently find a com-
mon point, a separating axis, and a pair of closest points for general con-
vex objects. Except for GJK, all algorithms dlscussed here are applicable
to polytopes only.

4.1 Finding a Common Point

We saw that the basic strategy for detecting intersections between poly-
gons was searching for a common point. Let us examine how far this
strategy gets us when applied to convex polyhedra.

The first known algorithm that improved upon the trivial O (n?) bound
was presented by Muller and Preparata [69]. Their algorithm requires that
the polyhedra are represented by a doubly-connected edge list (DCEL),
which represents the adjacency graph of the vertices of a polyhedron in
a convenient way. The detection algorithm determines a common point

43
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in O(nlogn) time, where » is the total number of vertices of both polyhe-
dra. This algorithm is used for constructing the intersection of two convex
polyhedra in O (nlogn) time.

In fact, it has been shown by Chazelle and Dobkin that detecting inter-
sections between polyhedra can be done in sub-linear time if the proper
preprocessing on the polyhedra is allowed, whereas constructing the in-
tersection of polyhedra has a linear lower bound [17]. The best upper
bound for the common point detection problem was given by Dobkin and
Kirkpatrick [26]. Their algorithm has an upper bound of O(log?r), and
requires a representation of each polyhedron decomposed into drums,
which are the convex subparts that are formed by slicing the polyhedron
at each vertex by a horizontal plane. The drum representation requires
O(n?) space. Little is known of how well these algorithms perform on
current computer platforms, since implementations are not available and
probably nonexistent.

An interesting way to view the intersection detection problem for poly-
topes is by regarding it as a linear programming (LP) problem. An LP
problem is an optimization problem of the form

maximize ¢-Xx
subjectto v;-x+8; <0 fori=1,...,n,

where the vector ¢, and the constraints v; - x + §; < 0 are given, and x
is the variable for which an optimal solution is sought. The feasible set
is the intersection of all halfspaces H™(v;, §;). A feasibility test returns, if
possible, a member of the feasible set. For a feasibility test, the objective
vector ¢ may be taken to be any vector, including the zero vector.

The problem of finding a common point of a pair of polytopes can be
expressed as an LP feasibility test in the following way. We take the half-
spaces of the two polytopes as the constraints of our LP problem, thus,
the intersection of the polytopes is the feasible set. Recall that the num-
ber of halfspaces in a halfspace representation of a polytope is linear in its
number of vertices. Hence, for a pair of polytopes of n vertices each, we
have O(n) constraints. Clearly, a common point of a pair of polytopes is
returned by a feasibility test on the set of halfspaces of both polyhedra.

Both Meggido [63] and Dyer [31] showed independently that low di-
mension LP problems can be solved in linear time with respect to the
number of constraints. Their solutions however, are rather complex and
have a large constant for problems in three or higher dimensions. Low-
dimensional LPs can be implemented in a surprisingly simple manner, by
applying a randomized algorithm, as shown by Seidel in [84]. His algo-
rithm has expected linear time complexity.
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MP [69] DK [26] LP problem
Representation DCEL | drum decomp. | halfspaces
' Space bound O(n) 0 (n?) O(n)
Time bound ‘O(nlogn) O (log? n) expected O (n)
Implementation || unknown unknown Seidel [84]

Table 4.1: Common point search algorithms

Table 4.1 shows an overview of the discussed common point detec-
tion algorithms. These algorithms seem less useful for collision detec-
tion of convex polyhedra, since we suspect that they have a large constant
for their time bounds. Moreover, exploiting coherence by using common
points from previous frames for speeding up intersection tests does not
appear to be useful, since in most applications of collision detection, colli-
sions are resolved rather than maintained.

4.2 Finding a Separating Axis

Another strategy for detecting collisions between convex objects is search-
ing for a separating plane or a separating axis. A separating plane or axis
is a witness of the disjointness of a pair of objects. This strategy is often
better suited for exploiting coherence than common point search, since it
is the objective in most applications to keep object pairs disjoint. Hence,
a witness of the disjointness of a pair of objects is likely to persist over
several frames.

A separating plane of two objects is a plane for which one object lies
in the positive, and the other in the negative open halfspace. The axis
orthogonal to a separating plane is referred to as a separating axis. Let
the plane H (v, §) be a separating plane of objects A and B, and assume
without loss of generality that A ¢ H®(v,8) and B C H®(v, §). We see
that for separating axis v we have

v-Xx>v.y forallxe Aandy € B.

Conversely, for an axis v for which the above inequality holds, we find
that each plane H(v, §) withmax{v-y:y€ B} <8 <min{v-x:x € A}isa
separating plane.

Coherence can be exploited by testing whether a separating plane or
axis from a previous frame also separates the objects in the current frame.
This operation is usually a lot cheaper than recomputing a separating
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Figure 4.1: If v- w — ||v||? < 0, then conv{v, w} contains a point u for which
lall < livil.

plane or axis. Since animated objects usually move relatively little in-
between frames, a separating axis from a previous frame is likely to be
a separating axis in the current frame, in which case we save ourselves the
cost of recomputing a separating axis.

We will show that for nonintersecting convex objects a separating axis
always exists. We do this by showing that for a pair of closest points of
a € Aand b € B of nonintersecting convex objects A and B, the vector
a — b is a separating axis.

Lemma 4.1. Let v and w be points, and suppose that v-w — ||v||? < 0. Then, the
line segment connecting v and w contains a point u for which ||lu] < ||v||. (See
Figure 4.1.)

Proof. Letu = v+ A(w — v), then u € conv{v,w} for0 < A < 1. Clearly,
a2 = [[v]|? = 2Av - (W —v) + A2 [lw — v||2. For Jju||? — ||v]2 = 0, we find roots

A =0and Ay = —2v- (W—v)/[lw—v|]2 It follows from v-w — ||v||? < O that
A2 > 0. Since [[w — v||* > 0, we find that |[u||2 — ||v||? is positive for A — oc.
Hence, [luf|> — |v|[? <0 for Ay < A < As. O

Lemma 4.2. Let C be a convex object and let v € C be the point closest to the
origin. Then, either v=0o0rv-w > 0 forallw e C.

Proof. Suppose that v # 0, and let w € C. Then, since C is convex, any
u € conv{v, w} is contained in C, and thus |[u| > |lv||. It follows from
Lemma 4.1 that if for all u € conv{u, w} we have |juj| > ||v|, then v - w —
Ivl* = 0. Hence, v-w > ||[v||> > O forallw € C. O
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Figure 4.2: The Minkowski sum of a pair of objects

Note that the point of a convex object closest to the origin is indeed unique,
since if there were two closest points, then the line segment connecting the
points would contain a point that lies closer to the origin. However, since
the object is convex, the line segments is contained in the object, and thus,
cannot have a point closer to the origin.

The Minkowski sum! of objects A and B is defined as

A—B={x-y:xeA,ye B}

Figure 4.2 shows an example of the Minkowski sum of a pair of object.
Although the sum of a pair of objects is a set of vectors, it is regarded as
a point set. The space of this point set has the zero vector 0 as its origin.
It is not very hard to show that if A and B are convex, then A — B is also
convex.

The distance between two objects A and B, denoted by d(A, B), is de-
fined as

d(A, B) =min{|x—y|:x€ A,y € B}

From this definition it follows that A N B # @ iff d(A, B) = 0. A pair of
points a € A, b € B for which |la — b|| = d(A, B) is called a pair of closest
points of A and B. Notice that in general a pair of closest points of two
objects is not uniquely defined. '

Theorem 4.3. Let A and B be convex objects and a € A and b € B, a pair of
closest points. Then, either AN B # @ or a — b is a separating axis.

Proof. Suppose that AN B = @. Then, a —b # 0. Clearly, a — b is the
point closest to the origin of A — B, the Minkowski sum of A and B. Since
A — B is convex, it follows from Lemma 4.2 that (a — b) - w > 0 for all
weA—B.letxe Aandy € B. Since (a—b) - (x —y) > 0, it follows that
(a—b)-x> (a—b)-y. Hence, a — b is a separating axis. O

! Although Minkowski difference seems more appropriate, we avoid using this term,
since it is defined differently in many geometry texts, namely as (A* — B)*, i.e., the com-
plement of the Minkowski sum of A’s complement and B (shrink one object by the other).
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Apparently, we can find a separating axis (as well as a common point)
by computing a pair of closest points, which can be done using one of the
distance computation algorithms described in following sections. How-
ever, other methods for finding a separating axis or a separating plane
exist that often require less computations than distance algorithms. We
will discuss a number of these algorithms first.

4.2.1 Separating a Pair of Polytopes

Contrary to the problem of finding a common point, the problem of find-
ing a separating plane for polytopes can not be expressed as a linear pro-
gramming problem. However, there is a less strict definition of separating
plane, referred to as weak separating plane, for which the separating plane
search problem can be expressed as an LP feasibility test. A weak separat-
ing plane is plane for which the objects are contained respectively in the
positive and negative closed halfspaces. The existence of a weak separating
plane does not guarantee the disjointness of the objects, but it does yield
the disjointness of the interiors of the objects. The problem of finding a
weak separating plane for a pair of polytopes can be expressed as an LP
problem in the following way.

It can be seen that a plane that weakly separates the vertices of the
polytopes, also weakly separates the polytopes themselves. For a pair of
polytopes A and B, we need to find a plane H (v, §) such that for all vertices
a € vert(A), we have v-a+ 6 > 0, and for all vertices b € vert(B), we
have v-b 4§ < 0. We see that our search space is four dimensional. This
problem can be expressed as the problem of finding an x = (v, &) subject to
the constraints (a, 1)-x > 0 fora € vert(A),and (b, 1)-x < Oforb ¢ vert(B),
which is clearly an LP problem. As we saw earlier, low-dimensional LP
problems can be solved in time linear in the number of constraints.

Let us get back to strict separation of polytopes. The following theorem
gives us a straightforward method for finding a separating axis for a pair
of polytopes which can successfully be used if the number of facet orien-
tations and edge directions is small. The proof of this theorem presented
here is a shorter alternative to the one given in [45].

Theorem 4.4. For a pair of nonintersecting polytopes, there exists a separating
axis that is orthogonal to a facet of either polytope, or orthogonal to an edge from
each polytope.

Proof. Let A and B be a pair of nonintersecting polytopes. Then, A — B,
is itself a polytope and does not contain the origin. Since a polytope can
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Figure 4.3: The vector x is a separating axis of A and B, whereas y is not a
separating axis.

be represented as the intersection of halfspaces whose boundaries are the
affine hulls of the polytope’s facets [48], at least one of the facets corre-
sponds with a halfspace that does not contain the origin. Let H* (v, §) be
such a halfspace that does not contain the origin. Since 0 ¢ H* (v, §), we
seethat§ < 0. Forallwe A — B,wehavev-w+§ > 0,and thusv-w > 0,
which in turn yields that v is a separating axis of A and B. Hence, a separ-
ating axis exists that is normal to a facet of A — B.

Each facet of A — B is (composed of sub-facets, being) either the Min-
kowski sum of a facet from one polytope and a vertex from the other, or
the Minkowski sum of a pair of edges from each polytope. A normal to a
facet of A — B is therefore either orthogonal to a face of one of the poly-
topes, or orthogonal to a pair of edges, one from each polytope. O

Hence, we see that a separating axis can be found by simply testing all
facet orientations and all combinations of edge directions to see if one of
these is a separating axis. For a pair of polytopes with f facet orientations
and e edge directions each, we need to test at most 2 f + 2 axes. If none of
these axes yield a separating axis, then the polytopes must intersect.

An important example of this approach is the separating-axes test
(SAT) for boxes, as described in [46]. A box has three facet orientations
and three edge directions which results in 15 axes to be tested. A single
separating axis test involves projecting both boxes onto the axis, and test-
ing whether the projection intervals of the boxes overlap. If the intervals
are disjoint, then the axis is a separating axis, as illustrated in Figure 4.3.
For rectangular boxes, the axes tests can be optimized such that the 15 tests
take less than 200 primitive arithmetic operations in total [46].
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The same method can be applied to other polytopes as well. For in-
stance, a triangle has one facet orientation and three edge directions. This
results in a total of 11 axes to be tested for a pair of triangles. For k-DOPs,
the number of possible axes will rapidly become too large for ¥ > 3, in
order for this method to be of any practical use. The number of facet ori-
entations of a k-DOP is at most k. Euler’s formula yields that the number
of edge directions is at most 3k — 6 [80]. Therefore, the number of axes that
need to be tested for determining whether a pair of k-DOPs intersect is
2k + (3k — 6)2. Zachmann shows in [105] that the projection of a DOP onto
an axis can be found in O(k) time. Thus, an intersection test for DOPs,
which involves testing all possible axes, has O (k®) time complexity. This
is not particularly good, considering that a trivial common point search
takes O (k?) time.

We see that for general polytopes, the number of axes is often too large
for this approach to be useful. We might do better taking a heuristic ap-
proach in choosing axes to be tested as separating axes. An algorithm that
takes such an approach is the Chung-Wang algorithm, which we will dis-
cuss next.

4.2.2 The Chung-Wang Algorithm

The Chung-Wang (CW) algorithm, presented in [20], is of interest to us
because of its original strategy, rather than its particular utility. The CW
algorithm is an iterative method for finding a weak separating axis for a
pair of polytopes. A weak separating axis of objects A and B is a nonzero
vector v such that

V-X>V-y forali x€ Aandy € B.

We introduce the notion of support mapping, which is a function s,
that maps a vector to a point of an object A, according to

sa(v) € A suchthat v-s4(v) = max{v-x:x e A}.

The value of a support mapping for a given vector is called a support
point. Note that a support mapping of a given object may not be uniquely
determined. The choice of support mapping does not matter in the appli-
cations of support mappings that we will encounter. Using this definition,
we express a weak separating axis of A and B as a nonzero vector v for
which

V-sa(=v) > v-sp(v),
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Figure 4.4: For a weak separating axis vwe have v - s4(—v) > v - sg(v).

as illustrated in Figure 4.4. Given a polytope A, there exists a vertex w of
A such thatv-w = v - s4(v) for any vector v. Phrased differently, we may
choose

54(V) = Svert(a)(V),

ie., for polytopes, we may restrict ourselves to support mappings that
return vertices only. The naive computation of a support point for a poly-
tope represented by a list of n vertices will take O(n) time. However, it
is shown in [20] that a support point can be found in O(logn) time for a
polytope represented using the hierarchical representation by Dobkin and
Kirkpatrick [27].

Let us express a weak separating axis of objects A and B in terms of
A — B, the Minkowski sum of A and B. It can be shown that the mapping
sa—p defined by

SA-B(V) = 54(V) — sg(—V)

is a support mapping of A — B. With this property we find that a nonzero
vector v, for which

V-s4-g(—v) >0,

is a weak separating axis of A and B.

We will now discuss the iterative method that underlies the CW algo-
rithm. Let vy be the axis to be tested in the kth iteration. The following axis
is taken as a better approximation of a possibly existing weak separating
axis:

Vit1 = Vi — 2(rg - Vi)r, where ry = w/[|well, and wx = s4—p(—vy).
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This choice is motivated by the observation that for a pair of spheres, for
which vy is not a weak separating axis, the axis vz, is a weak separating
axis [20]. As initial axis vp we may take an arbitrary unit vector. Each
v has length one, since each new v, is the reflection of Vi in the plane
H(rg, 0).

The CW algorithm terminates as soon as either v; is a weak separating
axis, i.e., v¢ - wx > 0, or there is evidence that the objects’ interiors inter-
sect. Figure 4.5 illustrates a sequence of iterations that results in v; being a
separating axis.

Note that ry is not defined for w; = 0. However, this case does not
yield a problem, since for w; = 0, we have v, - w; = 0, and thus, v, is a
weak separating axis, in which case the algorithm terminates.

Convergence is not quite proven for the CW. The following theorem
expresses the strongest point that can be made.

Theorem 4.5. Suppose that unit vector w is a weak separating axis of A and B,
and that vy is not a weak separating axis. Then, Vi1 -0 > Vi - u.

Proof. We deduce, vi+1-u = v -u — 2(rg - vi) (% - w). Since u is a weak
separating axis, and v, is not, we have ry - u > 0 and ry - v4 < 0. Hence,
Vi -u—2(rg - vl (g - w) > v - O

Chung and Wang do claim convergence for their algorithm in [20], how-
ever the proof they give is incorrect.

Since both v; and v are unit vectors, it follows from Theorem 4.5
that the angle between vi.1 and u is at most as large as the angle between
v¢ and u. However, this is not sufficient to conclude that v, - w, > 0, for
some k > 0, i.e., it does not prove that eventually a weak separating axis
is found. Further on, we will discuss how termination can be achieved
for a pair of disjoint polytopes. But first, let us discuss the case where the
objects are intersecting.

In the case where a weak separating axis does not exist, the algorithm
terminates as soon as there is evidence that the interiors of the objects in-
tersect. For this purpose, the CW algorithm uses a subalgorithm that tries
to compute a vector n; such thatng -w; > Oforalli = 0,...,k If such
a vector does not exist, then 0 must lie in the interior of A — B, and thus,
the interiors of A and B intersect. Chung and Wang present an O (k) time
algorithm for computing such an n;. Hence, for a pair of polytopes of
respectively n and m vertices, it takes O (k? + k(f(n) + f(m))) time to per-
form k iterations, where f(n) is the time it takes to compute a support
point for a polytope that has n vertices. Note that we may choose to per-
form the subalgorithm once in every fixed number of iterations, instead of
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@k=0 (b)k =1

©k=2 d) k=3

Figure 4.5: Four iterations of the CW algorithm. The dashed line segments
represent the support planes H(vi, —v¢ - wg). The plane in which v; is
reflected is represented as a continuous line segment.
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each iteration, in order to speed up the algorithm. This will however not
improve the time complexity. It shows that for an acceptable performance
of the algorithm the number of iterations needs to be kept small.

Discussion

So far, we have viewed the CW algorithm and some of its properties. We
are now ready to discuss its merits in greater detail.

Let us explore how large the number of iterations of the CW algorithm
can grow. Clearly, if v; is close to being a separating axis, i.e., vy - w; ~ 0,
then ry - vi ~ 0, and thus v;;; &~ v;, which suggests that convergence is
slow. This problem will occur most prominently if the objects are (almost)
touching. In our experiments, we compute a convergence factor p using
the formula

L - Vg

Tp—1 Vk—1

Here, ry - v is half the length of vi.; — v; (half the length of the dotted line
in Figure 4.5). For the cases where objects were touching, we often found
p ~ 1, which shows that the algorithm’s convergence is extremely slow.
In general, the number of iterations can grow infinitely large. How-
ever, Chung and Wang exploit a property that enables the algorithm to
terminate in a finite number of iterations. After a certain number of iter-
ations (Chung and Wang suggest the first time a point wy is returned that
appeared before), the algorithm continues iterating using v;4; = n; as a
new axis. If for this axis a support point is returned that appeared before,
then the axis is a weak separating axis, sincen; -w; > 0 foralli =0, . .. k.
Thus, in each iteration the algorithm either terminates, or the new support
point wi.; is different from all the support points returned so far. Since
the Minkowski sum of two polytopes of respectively m and n vertices has
at most mn vertices, at most mn different support points can be returned.
Therefore, the algorithm will perform mn iterations in the worst case, be-
fore establishing a termination condition. In practice, the algorithm will
often need fewer iterations, since only a small number of all the possible
support points will be returned. However, for polytopes that have a lot of
vertices, the number of iterations can still be quite large, which is harmful
for performance, considering the algorithm’s O (k?) time complexity.
Further iterations can be saved by exploiting frame coherence. We saw
that the initial axis vo may be chosen arbitrarily. In cases were there is a
lot of frame coherence, an existing separating axis of the object pair from
a previous frame is likely to be a separating axis in the current frame. If



4.3. COMPUTING THE DISTANCE 55

we take this axis as initial axis, the algorithm will often need only one
iteration.

At first glance, the CW algorithms seems a good candidate for gener-
alization to other convex objects besides polytopes, since we can also pro-
vide support mappings for non-polytopes. However, since the number of
support points of a non-polytope is unbounded, we cannot guarantee that
the algorithm terminates. Due to extremely slow convergence for cases
where the objects are almost touching, this termination condition is of cru-
cial importance; it is not merely a safety in case of numerical instability as
stated in the article [20].

Despite Snepvangers’ efforts to generalize the algorithm for applica-
tion on general convex objects [89], certain configurations of objects exist
that require arbitrary many iterations. The CW algorithm does not ap-
pear to be applicable to objects other than polytopes. In this respect, the
Gilbert-Johnson-Keerthi algorithm, which we will discuss in Section 44,
is a similar iterative method that can be generalized more successfully to
general convex objects.

4.3 Computing the Distance

The problem of computing the distance between a pair of objects is more
general than the problem of detecting whether the objects intersect, since
two objects intersect iff their distance is zero. A witness of the distance, a
pair of closest points, gives us a common point if the objects intersect, and
a separating axis (the difference of the closest points) in case the objects
are disjoint. Hence, algorithms for computing the distance are useful in
the context of collision detection. In this section, we present an overview
of algorithms for computing the distance between polytopes.

One of the first significant solutions to the polytope distance compu-
tation problem was presented by Dobkin and Kirkpatrick in [27]. They
devised an algorithm for computing the distance between two polytopes
in time linear in the total number of vertices. This algorithm utilizes a hi-
erarchical representation for two- and three-dimensional polytopes. They
later showed in [28] that the distance between a pair of polytopes with re-
spectively m and n vertices can be found in O(logm logn) time using the
same hierarchical representation.

The distance between two objects A and B can be expressed in terms
of their Minkowski sum A — B as

d(A, B) = [[v(A - B)l|,
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where v(C) is defined as the point in C nearest to the origin, i.e.,
v(@)eC and [[w(CO)|f = min{|{x}j:x e C).

An approach that can be taken is the following. First, an explicit repre-
sentation of the Minkowski sum A — B is computed, after which the point
v(A — B) is computed using this representation. We saw that the Minkow-
ski sum of two polytopes is itself a polytope, and can thus be finitely repre-
sented using any of the discussed polytope representations. Cameron and
Culley used this approach in an algorithm for computing the distance, in
which they represented A — B as the intersection of a set of halfspaces [14].

It can be seen that this approach will not yield a particularly low time
complexity, since for a pair of polytopes A and B of respectively m and
n vertices, an explicit representation of A — B may require O(mn) space,
and thus the best construction algorithm for A — B takes O (mn) time. In
order to improve this bound we need to take an approach in which A — B
is not explicitly constructed. A nice example of such an approach applied
to convex polygons in the plane is presented in [82]. In Section 4.4 we
will describe the GJK distance algorithm, which takes this approach for
computing v(A — B) of convex objects A and B in three-dimensional space.

The Lin-Canny algorithm (LC) is an incremental algorithm for com-
puting a pair of closest features of convex polyhedra [61]. A feature is a
vertex, an edge, or a facet of the boundary of a polyhedron. LC forms the
heart of I-COLLIDE, a publicly available software library for interactive
collision detection [22]. LC’s utility for interactive collision detection fol-
lows from its ability to compute a pair of closest features in near constant
time if the closest features are approximately known. This is useful when
there is a lot of frame coherence, as commonly is the case in computer ani-
mation. Since then, the closest features from a previous frame are likely to
be approximate to the closest features in the current frame.

LC finds the closest features by iteratively ‘walking” across the bound-
ary of the polyhedra towards the features of the boundary that lie closer to
each other. The algorithm starts at an arbitrary pair of features, preferably
features that lie near to the closest features. In each iteration, the algorithm
proceeds to a neighboring pair of features that lie closer to each other than
the previous pair.

Special care should be taken in handling local minima, i.e., feature pairs
that are not closest, and for which no closer neighboring feature pair exists.
The existence of a local minimum may be the result of the polyhedra inter-
penetrating, however, it does not guarantee this. Additional computations
are necessary in order to determine if the polyhedra truly intersect.
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DK [28] CC[14] LC[61]
Representation || hierar. repr. | winged-edge winged-edge
Space bound O(n) 0 (n?) - 0(n)
Time bound O(log? n) O (n?) empirically O (n)

(O(1), incremental)
Implementation | unknown exists [14] I-COLLIDE [22],
V-Clip [66]

Table 4.2: Distance computation algorithms

In theory, the running time of the LC algorithm has a worst-case upper
bound of O(n?) for a pair of polyhedra of n vertices each, since there are
O (n?) feature pairs. However, Lin and Canny claim that empirically their
algorithm has a time bound that is linear in the number of vertices, if no
special initialization is done, and constant, when the algorithm is initial-
ized by a pair of features that lie near to the closest features.

It has been noted by Mirtich that the original LC suffers from cycling,
i.e., infinitely alternating of pairs of features, for degenerate configurations
of nonintersecting objects [66]. He presents a variant of LC, called V-Clip,
which is claimed to solve this problem and has better performance than
the original algorithm. An implementation by Mirtich of the V-Clip algo-
rithm is made publicly available as the V-Clip collision detection library.

Table 4.2 shows an overview of the discussed distance computation al-
gorithms. Although the Dobkin-Kirkpatrick algorithm has the best worst-
case time bound, we cannot draw conclusions regarding its actual perfor-
mance, since there is no reference to an implementation of this algorithm.
Of the mentioned distance algorithms, the LC-based algorithms are best
suited for application in computer animation, where there is usually a lot
of frame coherence. In the following section we will discuss the Gilbert-
Johnson-Keerthi distance algorithm, which can be tailored to incremen-
tally compute the distance in expected constant time, as demonstrated by
Cameron in [13]. However, we found it to be more useful when applied to
incremental separating-axis computation.

4.4 The Gilbert-Johnson-Keerthi Algorithm

In this section we discuss the Gilbert-Johnson-Keerthi algorithm (GJK), an
iterative method for computing the distance between convex objects. The
original GJK distance algorithms is applicable to polytopes only [40]. Later
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on, Gilbert and Foo presented an extended GJK algorithm to be used for
convex objects in general {39].

We present a GJK implementation that has improved performance, ro-
bustness, and versatility over earlier implementations. The performance
improvements are the result of: (a) data caching and smarter selection of
sub-simplices in the GJK subalgorithm, (b) early termination on finding
a separating axis, in the application of GJK to intersection detection, and
(c) exploitation of frame coherence by separating axis caching. Regarding
robustness, we present a solution to a termination problem in the origi-
nal GJK due to rounding errors, which was noted by Nagle [71]. Finally,
regarding versatility, we show how GJK can be applied to a large family
of geometric primitives, which includes boxes, spheres, cones and cylin-
ders, and their images under affine transformation, thus demonstrating
the usefulness of GJK for collision detection of objects described in VRML

[8].

4.4.1 Overview of GJK

This section describes the extended GJK for general convex objects, first
presented in [39].

GJK is essentially a descent method for approximating v(A — B) for
convex A and B. In each iteration a simplex is constructed that is con-
tained in A — B and lies nearer to the origin than the simplex constructed
in the previous iteration. We define W; as the set of vertices of the simplex
constructed in the k-th iteration (k > 1), and v as v(conv(Wy)), the point
in the simplex nearest to the origin. Initially, we take Wy = @, and vg, an
arbitrary point in A — B. Since A — B is convex and W, € A — B, we see
that v € A — B, and thus ||v¢|| > ||[v(A — B)| forall k > 0.

GJK generates the sequence of simplices in the following way. Let w; =
sA-B(—Vi), where so_p is a support mapping of A — B. We take v;4| =
v(conv(Wi U {wi})), and as W1 we take the smallest set X € W U {wy),
such that vy is contained in conv(X). It can be seen that exactly one such
X exists, and that it must be affinely independent. Figure 4.6 illustrates a
sequence of iterations of the GJK algorithm in two dimensions.

In order to proof that the sequence {vx} converges to v(A — B), we re-
quire the following theorem.

Theorem 4.6. For vi € A — B, we have ||vi1]| < ||vell, with equality only if
vi = v(A — B).

Proof. Let vy € A — B. Then, ||Vi41]| = min{|[x|| : X € conv(W, U {wih} <
Ivll, since v € conv(Wy). Furthermore, vi - wy — ||vi||? < 0, with equality
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(@k=0 b k=1

k=2 k=3

Figure 4.6: Four iterations of the GJK algorithm. The dashed lines repre-

sent the support planes H(—vg, vx - wi). The points of Wy are drawn in
black.



60 CHAPTER 4. CONVEX OBJECTS

only if vy = v(A— B) [40]. Suppose v; # v(4 — B). Then, v;-w; — vz [[2 < 0,
and thus according to Lemma 4.1, there exists a u € conv{v;, w;} such that
lu]l < |Ivgll. Since v € conv(W}), and thus conv(vy, wy} is contained in
conv(W U {wi}), we find that ||vi1]] < [lvell. O

Theorem 4.6 provides a necessary, yet not sufficient condition for global
convergence. In order to prove that v, indeed converges to v(A — B), we
must further show that the mapping of v, to v, is closed [62]. We refer
to [39] for a proof of closeness of GJK.

For polytopes, GJK arrives at vy = v(A — B) in a finite number of iter-
ations, as shown in [40]. For non-polytopes this may not be the case. For
these type of objects, it is necessary that the algorithm terminates as soon
as vy lies within a given tolerance from v(A — B). The error of v is esti-
mated by maintaining a lower bound for ||v(A — B)||. As a lower bound
we may take the signed distance from the origin to the supporting plane
H(—vy, vi - wi), which is

Sk = Vi - Wi/ || veell.

This is a proper lower bound since for positive &, the origin lies in the
positive halfspace, whereas A — B is contained in the negative halfspace
of the plane. In Figure 4.6 we see that §; is positive in the cases where the
dashed line crosses the arrow.

Let f be a function on A — B defined by f(v) = v - s4_p(—v). Then,
8k = f(vk)/llvkll. Since f is continuous, and f(v(A — B)) = |[v(4 — B)||3,
it can be seen that {&;} converges to |v(A — B)|. Hence, the algorithm
terminates in a finite number of iterations for any positive error tolerance.

However, contrary to ||v¢||, the lower bound & may not be monotonous
ink, ie., itis possible that$; < §; for j > i. Furthermore, 0 is a trivial lower
bound for ||[v(A — B)|. Therefore, we use

wx = max{0, &, ..., &}

as a lower bound, which is often tighter than 6;. A monotonous lower
bound is needed for the following reason. For certain configurations of
objects (in particular objects that have flat boundary elements), the func-
tion f is ill-conditioned, i.e., a small change in v may result in a large
change in f(v). Since the computation of v with finite precision arith-
metics inevitably suffers from rounding errors, the computed value for &
may be considerably smaller than its actual value. The relative error in v
is larger for sets Wy that are close to being affinely dependent, as we will
see Subsection 4.4.4. GJK has a tendency to generate simplices that are
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progressively more oblong, i.e., closer to being affinely dependent, as the
number of iterations increases. Hence, for large k, the computed values
for 8 may be less reliable.

~ Given ¢, a tolerance for the absolute error in ||v|, the algorithm termi-
nates as soon as ||vg|l — ur < e. Algorithm 4.1 described the GJK distance
algorithm presented in pseudo-code.

Algorithm 4.1 The GJK distance algorithm

v:="arbitrary point in A — B”;
W =g
u:=0;
close_enough := false;
while not close_enoughandv # 0 do begin
Wi=s4-p(—V);
§:=v-w/|vl;
p :=max{u, 8};
close_enough :=||v|| — u < &;
if not close_enough then begin
v:=v(conv(W U {w}));
W :="smallest X € W U {w} such that v € conv(X)";
end
end;
return ||v||

We now focus on the computation of v = v(conv(Y)) for an affinely
independent set ¥ and the determination of the smallest X C Y such that
v € conv(X). These operations are performed by a single subalgorithm.
The requested subset X = {xq, ... , X,} of Y is characterized by

n n
V= ZO:MX;' where Z)‘i =1 and A; > 0.
= i=0

This subset X is the largest of all nonempty Z C Y for which all the A;-
s of the point v(aff(Z)) are positive. The requested point v is the point
v(aff(X)).

It remains to explain how to find the A;-s for v(aff(X)), where X is
affinely independent. We observe that the vector v = v(aff(X)) is per-
pendicular to aff(X), ie., v e aff(X)and v- (x; —x¢o) =Ofori = 1,...,n.
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Hence, the A;-s are found by solving a system of linear equations. We ap-
ply Cramer’s rule to solve these systems of equations. Since we need to
find solutions for all nonempty subsets of ¥, we exploit the recursion in
Cramer’s rule. Let Y = {yo, ..., ¥»}, where n < 4. Each nonempty X C Y
is identified by a nonempty Ix € {0, ..., n} such that X = {y; : i € Ix}. We
obtain the following recursively defined solutions. For each subset X, we

have A; = A;(X)/A(X), where A(X) = Zie[x A;(X), and
Ai({yi) = 1
AjX ULy = Y Ay —Yi-¥)),
iely

where j ¢ Iy and k is an arbitrary but fixed member of Iy, for instance
k = min(Ix). The smallest X C Y such that v € conv(X) can now be
characterized as the subset X for which (i) A;(X) > 0 for each i € Iy, and
(i) Aj(X U {y;}) <0, forall j ¢ Ix. The subalgorithm successively tests
each nonempty subset X of ¥ until it finds one for which (i) and (ii) hold.

Finally, a pair of closest points is computed as follows. At termination,
we have a representation of v~ v(A — B) as

n n
V= ;kiyi where X(;Ai =1 and A; > 0.
1= =

Eachy; = p; —q;, where p; and q; are support points of respectively A and
B. Leta= )7 (Ap;andb = Y " ;1q;. Since A and B are convex, it is
clear that a € A and b € B. Furthermore, it can be seen thata — b = v.
Hence, a and b are closest points of A and B.

4.4.2 Support Mappings

In order to use GJK on a given class of objects, all we need is a support
mapping for that class. In this section we discuss the computation of the
support points for a number of geometric primitives and their images un-
der affine transformation. Using the support mappings presented here,
the GJK algorithm can be applied to distance computation and collision
detection between objects described in VRML [8].

Polytope

The set of polytopes includes simplices (points, line segments, triangles,
and tetrahedra), convex polygons, and convex polyhedra. For a polytope
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A, we may take s4(V) = Svert(a)(V), i.e.,
sa(v) € vert(A) where v-s4(v) = max{v-x:x € vert(A)}.

Obviously, a support point of a polytope can be computed in linear time
with respect to the number of vertices of the polytope. However, it has
been mentioned in a number of publications [14, 20, 13, 75] that by ex-
ploiting frame coherence, the cost of computing a support point of a con-
vex polyhedron can be reduced to almost constant time. For this purpose,
an adjacency graph of the vertices is maintained with each polytope. Each
edge on the polytope is an edge in the graph. In this way, a support point
that lies close to the previously returned support point can be found much
faster using local search. This technique is commonly referred to as hill
climbing. The adjacency graph of polytope vertices can be obtained by
computing the convex hull, for instance, using Qhull [5].

Box

A Box primitive is a rectangular parallelepiped centered at the origin and
aligned with the coordinate axes. Let A be a Box with extents 27,, 2ny, and
2ny. Then, we take as support mapping for A,

sa((x,y,2)T) = (sgn(x)ny, sgn(y)ny, sgn()n,)",

where sgn(x) = —1,if x <0, and 1, otherwise.

Sphere

A Sphere primitive is a ball centered at the origin. The support mapping
of a Sphere A with radius p is

SA(V):{ ﬁv ifv£0

0 otherwise.

Cone

A Cone primitive is a capped cone that is centered at the origin and whose
central axis is aligned with the y-axis. Let A be a Cone with a radius of p
at its base, and with its apex at y = 75 and its base at y = —n. Then, the

for the top angle o we have sin(a) = p/+/p? + (21)2. Let o = /x2 + 22, the
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distance from (x, y, z)T to the y-axis. We choose as support mapping for
A, the mapping

©, n,0)T if y > |{(x, y, 2)T|f sin()
sa((x,y, 29D =1 (&x, —n, 22)T else,ifo > 0
O, —n, O)IIL otherwise.

Cylinder

A Cylinder primitive is a capped cylinder that again is centered at the ori-
gin and whose central axis is aligned with the y-axis. Let A be a Cylinder
with a radius of p, and with its top at y = 5 and its bottom at y = —z. We
find as support mapping for A the mapping

(Ex, sgn(y)n, 22)T ifo >0

Ty —
sal(x,y,2)") = { 0, sgn(y)n, 0) otherwise.

Affine Transformation

Given a class of objects for which we have a support mapping, the fol-
lowing theorem yields a method for computing support points for images
under affine transformations of objects of this class.

Theorem 4.7. Given s4, a support mapping of object A, and T(x) = Bx + ¢, an
affine transformation, a support mapping for T(A), the image of A under T, is

sty (V) = T(s4(B'V)).
Proof. A support mapping st4) is characterized by
V514 (V) = max{v-T(x) : x € A}.

We rewrite the right member of this equation using the following deduc-
tion.

V-T(X)=V-BX+V~C=VTBX—|—V~C=(BTV)TX+V-C=(BTV)~X+V~C.

This equation is used in the steps marked by () in the following deduc-
tion.

max{v-T(X) :xe€ A} = max{(BTv)-x+v-c:xeA}
= max{(BTv)-x:xeA}+v-c
= (BTv) saBTv) +v-¢
© v T BTY)

Hence, s1(4)(v) = T(s4(BTv)) is a support mapping of T(A). O
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Note that the inverse of B is not used for computing a support point of an
affinely transformed object, since for support mappings the vector v acts
as a normal, rather than the difference of two points.

4.4.3 Improving Speed

This section presents a fast implementation of the subalgorithm and a col-
lision detection algorithm derived from the GJK distance algorithm.

Subalgorithm

It is hinted in [40] that by caching and reusing results of dot products,
substantial performance improvement can be obtained. Since some or all
vertices in Wy reappear in W, (, many dot products from the k-th iteration
are also needed in the k + 1-th iteration. We will show how this caching of
dot products is implemented efficiently.

In order to minimize the caching overhead, we assign an index number
to each new support point, which is invariant for the duration that the
support point is a member of Wy U {w,}. Since W) U {w;} has at most four
points, and each point that is discarded will not reappear, we need to cache
data for only four points. The support points are stored in an array y of
length four. The index of each support point is its array index. The set
Wi is identified by a subset of {0, 1, 2, 3}, which is implemented as a bit-
array b, i.e.,, Wp = {yli] : bli] = 1,i = 0, 1, 2, 3}. The index number of
the new support point w; is the smallest i for which b[i] = 0. Note that
a free ‘slot’ for wy is always available during iterations, because if W; has
four elements, then vy = v(conv(W;)) must be zero, since W; is affinely
independent, in which case the algorithm terminates immediately without
computing a support point. " ‘

The dot products of all pairs y[i], y[j] € Wi U {w} are stored in a 4 x 4
array d, i.e., d[i, j1 = y[i] - y[j]. In each iteration, we need to compute
the dot products of the pairs containing w; only. The other dot products
are already computed in previous iterations. For a W containing n points,
this takes n + 1 dot product computations.

We further improve the performance of the subalgorithm by caching
the values of the A;(X)-s. Let Y = W, U {w}. For many of the X C Y, the
A;(X)-s are needed in several iterations, and are therefore better cached
and reused instead of recomputed. For this purpose, each subset X is iden-
tified by the integer value of the corresponding bit-array. For instance, for
X = {yl0], y[3]}, we find bit-array 1001, corresponding to integer value
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2% +2% = 9. The values of A;(X) for each subset X are stored in a 16 x 4 ar-
ray D. The element D[x, i] stores the value of A;(X), where x is the integer
value corresponding with subset X. Only the elements D[x, i] for which
bit i of bit-array x is set, are used. Similar to the dot product computations,
we only need to compute, in each k-th iteration, the values of A; (X) for the
subsets X containing the new support point w , since the other values are
computed in previous iterations.

Another improvement concerning the subalgorithm is based on the fol-
lowing theorem.

Theorem 4.8. For each k-th iteration, where k > 1, we have wy, € Wit1.

Proof. Suppose wy & Wiy1, then v(Wi41) = v(W,), and thus Vit+1 = V. But
since [|[Vg41]l < vkl this yields a contradiction. (]

Consequently, only those subsets X, for which w; € X need to be tested by
the subalgorithm. This reduces the number of subsets from 2"*+! — 1 to 2,
where n is the number of elements in Wy.

Collision Detection

For deciding whether two objects intersect, we do not need to have the
distance between them. We merely need to know whether the distance is
equal to zero or not. Hence, as soon as the lower bound for the distance
becomes positive, the algorithm may terminate returning a nonintersec-
tion. The lower bound is positive iff v - w; > 0,1i.e., v isa separating axis
of A and B. In general, GJK needs less iterations for finding a separating
axis of a pair of nonintersecting objects than for computing an accurate
approximation of v(A — B). For instance in Figure 4.6, the vector vy is
a separating axis for the first time when k = 2. If the objects intersect,
then the algorithm terminates on v = 0, returning an intersection. Al-
gorithm 4.2 shows an algorithm for computing a separating axis, which
is derived from the GJK distance algorithm. Besides requiring fewer iter-
ations in case of nonintersecting objects, the collision detection algorithm
performs better than the distance algorithm for another reason. Notice
that the value of ||v| is not needed in the GJK separating axis algorithm.
The computation of ||v|| involves evaluating a square root, which is an ex-
pensive operation. A single iteration of the collision detection algorithm is
therefore significantly cheaper than an iteration of the distance algorithm.

Also, note that in the collision detection algorithm, v does not need to
be initialized by a point in A — B, since the length of v does not matter.
This feature is convenient for exploiting frame coherence.
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Algorithm 4.2 The GJK separating axis algorithm

v :="arbitrary vector”;
W =0, '
repeat
Wi=s54-p(—V);
if v-w > 0then return false;
v:=v(conv(W U {w}));
W :="smallest X € W U {w} such that v € conv(X)”;
until v = 0;
return true

Similar to closest-point tracking algorithms, such as the Lin-Canny
closest feature algorithm [61], and Cameron’s Enhanced GJK algorithm
[13], an incremental version of the GJK separating axis algorithm shows
almost constant time complexity per frame for convex objects of arbitrary
complexity, if frame coherence is high. The incremental separating axis
GJK algorithm, further referred to as ISA-GJK, exploits frame coherence
by using the separating axis from the previous frame as initial vector for
v. If the degree of coherence between frames is high, then the separating
axis from the previous frame is likely to be a separating axis in the current
frame, in which case ISA-GJK terminates in the first iteration. Figure 4.7
shows the behavior of ISA-GJK for a smoothly moving object. We saw in
Section 4.4.2 that a support point can be computed in constant time for
quadrics and, if coherence is high, in nearly constant time for arbitrary
polytopes. Hence, in these cases, ISA-GJK takes nearly constant time per
frame.

In order to compare the performance of ISA-GJK with existing algo-
rithms, we conducted the following experiment. As benchmark we took
the multi-body simulation from I-COLLIDE [22]. This is a simulation of
a number of polyhedra that move freely inside a cubic space. The num-
ber, complexity, density, and translational and rotational velocities of the
objects in the space can be varied in order to test the algorithms under dif-
ferent settings. The simulation has a simple type of collision response. It
exchanges the translational velocities of each colliding pair of objects, thus
simulating a pseudo-elastic reaction. Objects also bounce off the walls of
the cubic space in order to constrain them inside the space.

Using this benchmark, we compared the performance of ISA-GJK to
Lin-Canny’s and Chung-Wang’s. For testing Lin-Canny we used the orig-
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Figure 4.7: Incremental separating axis computation using ISA-GJK. The
separating axis v from ¢ = 0 is also a separating axis for t = 1. However, v
fails to be a separating axis for t = 2. A new separating axis v’ is computed
using v as initial axis.

inal I-COLLIDE [21]. For Chung-Wang we took Q-COLLIDE, a version of
[-COLLIDE in which the Lin-Canny closest feature test is replaced by the
Chung-Wang intersection test. Unfortunately, Q-COLLIDE is no longer
publicly available, however, we managed to obtain the source code before
it was removed from its web site [19]. Finally, for testing ISA-GJK, we re-
placed the Lin-Canny test in I-COLLIDE by a C++ implementation of our
ISA-GJK intersection test.

The tests were performed on a Sun UltraSPARC-I (167MHz), compiled
using the GNU C/C++ compiler with ‘-O2’ optimization. As default set-
ting we used 20 objects, each having 20 vertices. The default density was
set at 5% of the space being occupied by objects. The translational veloc-
ity of an object is expressed in the percentage of its radius the object is
displaced in each frame. The default value is 5%. The default rotational
velocity is 10 degrees per frame. For each setting, we measured the times
for the three algorithms by simulating 50,000 frames.

We experimented with different densities, translational velocities, and
rotational velocities. The results of this experiment are shown in Fig-
ure 4.8, 4.9, and 4.10. Overall, ISA-GJK is roughly five times as fast as
Lin-Canny. However, with respect to Chung-Wang, ISA-GJK takes, on av-
erage, twice as much time. We did not found significant differences in
accuracy for these settings. ISA-GJK and Chung-Wang consistently return
the same collisions, whereas Lin-Canny occasionally misses a collision de-
tected by the other two, although the differences are minimal.
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Figure 4.8: Performance under density variations
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Figure 4.9: Performance under translational-velocity variations
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Figure 4.10: Performance under rotational-velocity variations
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4.4.4 Improving Robustness

Numbers represented by a machine have finite precision. Therefore, arith-
metic operations will introduce rounding errors. In this section we discuss
the implications of rounding errors for the GJK algorithm, and present so-
lutions to problems that might occur as a result of these.

Termination Condition

Let us review the termination condition ||v|| — 4 < & of the GJK distance
algorithm. We see that for large [|v|| the rounding error of ||v|| — u; can be
of the same magnitude as e. This may cause termination problems. We
solve this problem by terminating as soon as the relative error, rather than
the absolute error, in the computed value of ||v|| drops below a tolerance
value & > 0. Thus, as termination condition we take ||v|| — u < gllvl.

Moreover, for v & 0, we see that the right member of the inequality
might underflow and become zero, which in turn will result in termination
problems. This problem is solved by terminating as soon as ||v| drops
below a tolerance w, where w is a small positive number.

We would like to add that our experiments have shown that for quadric
objects, such as spheres and cones, the average number of iterations used
for computing the distance is O (— log(e)), i.e., the average number of iter-
ations is roughly linear in the number of accurate digits in the computed
distance. For polytopes, the average number of iterations is usually less
than for quadrics, regardless of the complexity of the polytopes, and is not
a function of ¢ (for small values of ¢).

Backup Procedure

The main source of GJK’s numerical problems due to rounding errors is
the computation of A;(X). Each nontrivial A;(X) is the product of a num-
ber of factors of the form y; - y; —y; - y;. If yx is almost equal to y; in one
of these factors, i.e., X is close to being affinely dependent, then the value
of this factor is close to zero, in which case the relative rounding error in
the machine representation of this factor may be large due to numerical
cancellation. This results in a large relative error in the computed value of
A;(X), causing a number of irregularities in the GJK algorithm.

One of these irregularities was addressed in the original paper [40].
Due to a large relative error, the sign of the computed value of A;(X) may
be incorrect. As a result of this, the subalgorithm will not be able to find a
subset X that satisfies the stated criteria. The original GJK uses a backup
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procedure to compute the best subset. Here, the best subset is the subset
X for which all A; (X)-s ate positive and v(aff(X)) is nearest to the origin.

In our experiments, we observed that, in the degenerate case where
the backup procedure needs to be called, the difference between the best
vector returned by the backup procedure and the vector v from the pre-
vious iteration is negligible. Hence, considering the high computational
cost of executing the backup procedure, we chose to leave it out and re-
turn the vector from the previous iteration, after which GJK is forced to
terminate. Should the algorithm continue iterating after this event, then it
will infinitely loop, since each iteration will result in the same vector being
computed.

I1l-conditioned Error Bounds

Despite these precautions, the algorithm may still encounter configur-
ations of objects that cause it to loop infinitely, as noted by Nagle [71]. This
problem may occur when two polytopes that differ a few orders of mag-
nitude in size are in close proximity of each other. Due to the difference
in size, the Minkowski sum of the objects has extremely oblong shaped
facets. Let us examine a scenario in which the current simplex conv(W) is
an oblong shaped triangle, and v = v(A — B) is an internal point of the
triangle.

First we note that two of the triangle’s vertices lie close to each other.
This may cause a large relative rounding error in the computation of A;(X)
for some subsets X. Hence, the computed value [v] of v might suffer from
this error. Note that the subalgorithm always computes A;-s that are posi-
tive and add up to one. Thus, [v] is also an interior point of the triangle, yet
located at some distance from v. Figure 4.11(a) depicts the effect of an error
in [v]. We see that a small error in [v] may result in a large errorin [||v||—u],
the computed error bound of ||v||. The algorithm should terminate at this
point since the actual ||v|| — u is zero. However, the error in [||v|| — u]
causes the algorithm to continue iterating. Since the support point w for
[v] is already a vertex of the current simplex, the algorithm will find the
same [v] in each following iteration, and thus, will never terminate.

Another problem occurs when v(A — B) lies close to the diagonal of an
oblong quadrilateral facet in A — B, as depicted in Figure 4.11(b). Again,
the large error in [||v|| — 1] causes the algorithm to continue iterating. Only
this time, GJK alternately returns the diagonal’s opposing vertices w and
w’ as support points. In each iteration, one of the vertices is added to the
current simplex and the other is discarded, and vice versa. The remaining
two vertices of the current simplex are the vertices of the facet lying on the
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(b) Alternating support points

Figure 4.11: Two problems in the original GJK, resulting from ill-
conditioned error bounds.



74 CHAPTER 4. CONVEX OBJECTS

diagonal. We see that for the simplex containing w, the value [v}' is com-
puted, which results in the vertex ' being added to the current simplex.
For the simplex containing w’, the value [v] is computed, which again will
cause w to be added to the current simplex.

Both degenerate cases are tackled in the following way. In each iter-
ation, the support point w; is tested whether it is a member of W;_; U
{wi—1}. This can only be true as a result of one of the degenerate cases. If
a degenerate case is detected, then the algorithm terminates and returns
[vi] as the best approximation of v(A — B) within the precision bounds of
the machine.

We have done some extensive bench tests on random input in order to
compare the robustness of our enhanced algorithm with the original GJK.
The tests showed that with this extra termination condition, our algorithm
terminates properly for all tested configurations of polytopes, regardless
of the size of the tolerance for the relative error in the computed distance,
whereas the original GJK occasionally failed to terminate on the same in-
put.

4.5 Conclusions

The best performance for collision detection of polytopes is obtained using
by incremental algorithms that exploit frame coherence. This category in-
cludes the Lin-Canny algorithm, and its variant, V-Clip, the Chung-Wang
algorithm, Enhanced GJK, and our ISA-GJK. Except for Chung-Wang,
source code for all these algorithms is currently publicly available. :

All these algorithms have a running time per frame that is roughly
constant. Lin-Canny, V-Clip, and Enhanced GJK compute a closest point
pair, whereas Chung-Wang and ISA-GJK find a separating axis. Overall,
the incremental separating axis algorithms have the best performance, and
are therefore most suitable for interactive collision detection. As an added
bonus, ISA-GJK presented here is, besides polytopes, applicable to other
convex objects as well, for instance to quadric primitives, such as cones,
and cylinders.

In the application of collision detection to physics-based simulations,
it is necessary to have (an approximation of) a contact plane in order to
compute the direction of the reaction forces to a collision. As we saw in
Chapter 2, a contact plane can be approximated using a closest point pair
from the frame prior to the collision frame. Obviously, we can use a closest
point tracking algorithm for finding this closest point pair. However, since
only the closest point pair from the frame prior to the collision frame is
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needed, the following strategy, suggested in [18], is likely to be faster.

For detecting intersections, an incremental separating axis algorithm,
such as ISA-GJK, is used. On detecting a collision, we back up to the pre-
vious frame and compute the closest points for this frame using a closest
point algorithm, such as the GJK distance algorithm. In general, the added
cost of the closest point computation is largely made up for by the better
performance of the separating axis algorithm.
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Chapter 5

Spatial Data Structures

“I feel like a million tonight, but one at a time.”
Mae West

So far, we have discussed intersection tests for a variety of shape types. For
collision detection of models composed of thousands of objects, the num-
ber of intersection tests that need to be performed can become quite large.
In this chapter, we will discuss a number of spatial data structures that can
be used to avoid doing a lot of intersection tests for complex models.

Spatial data structures are used in two ways. Firstly, they can be used
to reduce the number of intersection tests among a large number of freely
moving objects in a scene. Secondly, they are used to reduce the number
of pairwise primitive intersection tests in intersection testing between two
complex models composed of a large number of primitives.

An important concept in this context is geometric coherence, as de-
fined in Chapter 2. Geometric coherence is important, since it allows us to
quickly reject pairs of objects from intersection testing based on the region
of space that they occupy. Spatial data structures, such as voxel grids, hi-
erarchical space partitioning structures, and bounding volume hierarchies
can be used for ‘capturing’ geometric coherence. Basically, the data struc-
tures that are used for this purpose fall into two categories: space parti-
tioning, and model partitioning. In the following sections, we will discuss
the merits and drawbacks of data structures for each category.

5.1 Space Partitioning

A space partitioning is a subdivision of space into convex regions, called
cells. Each cell in the partitioning maintains a list of references to objects

77
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that are (partially) contained in the cell. Using such a structure, a lot of
object pairs in the model can be quickly rejected from intersection testing,
since we only need to test the pairs of objects that share a cell. A very
straightforward space partitioning is a voxel grid.

5.1.1 Voxel Grids

A voxel grid is a space partitioning into uniform rectangular cells. A
voxel grid is represented by an axis-aligned box enclosing all objects in
the model, and a three-dimensional array of cells of size N, x Ny x N,
where Ny, Ny, and N, are the number of subdivisions along the respective
axes. Other than the position and size of the box, no further geometric
data need to be maintained in the grid structure.

Let (Bx, By, B.)T be a vertex of the box and nx, Ny, and n,, the extents
along the respective axes, such that the box is the Cartesian product of the
intervals [Bx, Bx + nx) for k = x, y, z. Then, the cell indexed by (ix, iy, i;) is
the box defined by the product of intervals

[Be + ik, Be+ (e + D) for0<i < Neand k = x, y. 2.
N Ni

Each cell maintains a list of objects that intersect with the cell.

Assume we have a collection of objects of more or less the same size
which are represented by primitive shapes, such as boxes or spheres, for
instance used as bounding volumes, and assume that the set has a high
degree of geometric coherence and is distributed evenly over the space.
Then, for a grid that has a number of cells that is linear in the number
objects, adding or moving an object can be done in constant time [16, 58].
This is useful in an environment with lots of similar moving objects such
as described in [107].

_ Voxel grids have been shown to be useful also in real-time intersection

testing between complex rigid objects [37, 38]. Here, each object’s primi-
tives are maintained in a grid that is aligned to the local coordinate system
of the object. The algorithm finds all pairs of overlapping nonempty cells
of a pair of relatively oriented grids, and tests for intersections between
primitives for these pairs of cells.

The benefits of using a voxel grid are low storage usage, and fast cell
access. However, the biggest drawback of voxel grids, which is common
to all bucketing techniques, is the fact that performance greatly depends
on the density of objects in the space being uniform. If the objects in an
environment are clustered, which is commonly the case in many applica-
tions, then a few cells contain most of the objects, whereas the majority
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of cells are empty. Hence, the grid is not very useful in rejecting pairs of
objects for intersection testing. ‘

Another drawback is the fact that the best resolution of a voxel grid for
a given model is hard to estimate. If there are too few cells in the grid,
then the cells will be crowded and thus a lot of intersection tests will be
performed among objects in each cell. If there are too many cells, then the
grid takes up a lot of storage, and many cells will maintain references to
identical objects. This results in a lot of intersection tests being repeated
over and over again, since often a number of cells will maintain the same
pair of objects.

Of course, we may keep a record of all the pairs of objects that are
tested for intersection in order to avoid repeating intersection tests, simi-
lar to mailbox methods used in ray tracing [41]. However, the overhead of
maintaining these data results in added computational and storage costs.
Also, inserting an object that overlap many cells is expensive, since a ref-
erence to this object needs to be inserted in each cell.

Voxel grids work best for geometrically coherent sets of primitives of
uniform density and size. However, in practice, few models satisfy these
conditions. Hence, adaptive partitioning schemes, using recursive space
partitioning, often yield better results. In the following sections, we will
discuss a number of hierarchical space partitioning methods that are better
suited for dealing with clusters of objects.

5.1.2 Octrees and k-d Trées

Octrees and k-d trees are hierarchical structures for partitioning space into
rectangular cells. Each node in the tree corresponds to a rectangular region
of the space. The root node corresponds to the whole space represented
by a rectangular box enclosing the complete model. Each internal node in
the tree represents a subdivision of its corresponding region into smaller
regions which correspond to the children of the node. The regions of the
leaf nodes are the cells in which, the objects are maintained. ’
Octrees and k-d trees differ in the way the regions are subdivided. Each
internal node in an octree divides its corresponding region into eight oc-
tants by splitting the region along the three coordinate axes. In a k-d tree,
the region of an internal node is subdivided into two regions by splitting
the region along an arbitrary coordinate axis. See Figure 5.1 for a visual
representation of the two structures. It can be seen that the best k-d tree
often has fewer cells than the best octree for the same configuration of ob-
jects. ’
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(a) Octree

(b) k-d tree

Figure 5.1: Two hierarchical structures for partitioning space into rectan-
gular cells
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(a) Octree

(b) k-d tree

Figure 5.2: A query object (dashed circle) can overlap less fat cells than
thin cells.

In the standard representation, a region is split into subregions of equal
size. However, octree or k-d tree variants, in which regions are split at
arbitrary points along the axis, are possible as well. These tree variants
require more storage, since the positions of the partitioning planes need
to be stored in the internal nodes, but the added freedom in choosing the
partitioning results in a structure that is more adaptive to the configuration
of objects.

It can be seen that in a standard octree each node’s region has the same
aspect ratio as the root’s region. This property often results in poor par-
titionings if the root region is oblong. Often, partitioning a space into
fat cells (aspect ratio ~ 1) results in better performance for intersection
queries than a partitioning into thin cells, since a given query object can
overlap more thin cells than fat cells of the same volume, as depicted in
Figure 5.2. Hence, in the cases where the root’s region is oblong, it is better
to use k-d trees, rather than octrees, since in a k-d tree a cell’s aspect ratio
need not be equal to the root region’s aspect ratio. Of course, for octrees
the root region can be taken to be a cube enclosing the objects in the model,
however, this may result in a larger number of cells of which some are al-
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ways empty. A more general definition of fatness and its significance to
space partitioning is presented in [25].

The benefit of using a recursive space partitioning is the fact it is adap-
tive to local densities in a model. In regions where a lot of objects are clus-
tered the space is partitioned into many small cells, whereas in regions
where there are hardly any objects the cells can be large. In environments
in which the local densities of objects change over time, for instance, as
in simulations of chemical phenomena [97], dynamic hierarchical space
partitioning structures may be applied. If a cell becomes crowded it can
be subdivided into smaller cells containing less objects. Conversely, if the
children of a node, which are all leaves, contain few objects, the corre-
sponding cells can be united and the internal node is transformed into a
leaf.

Octrees and k-d trees can be used for reducing the number of pairwise
intersection tests among objects in a model, as well as for reducing the
number of intersection tests between primitives from a pair of complex
models. An example of a k-d-tree-type data structure that is used in the
latter application is the BoxTree by Zachmann and Felger [106]. A Box-
Tree is constructed a priori for each complex model in its local coordinate
system. It is a static structure, and is therefore applicable to rigid, i.e.,
non-deformable, models only. Examples of uses of octrees for deformable
models are described in [68, 88]. In both methods, a single octree, main-
taining primitives for different objects in the scene, is constructed anew
for each frame. In Section 5.2 we will present a new scheme for detec-
ting collisions among deformable models, which is based on axis-aligned
bounding box trees.

Octrees and k-d trees are popular space partitioning structures, since
they require relatively little storage and are adaptive to differences in local
densities in a model. Next, we meet the most general of all recursive space
partitioning structures, the binary space partitioning tree.

5.1.3 Binary Space Partitioning Trees

A binary space partitioning (BSP) tree is a hierarchical structure for parti-
tioning space recursively into convex cells. Each internal node in the tree
divides the convex region associated with the node into two regions by
means of a freely oriented partitioning plane. Phrased differently, a BSP
tree is a variable split k-d tree, but without the restriction that the parti-
tioning planes are oriented orthogonal to the coordinate axes. A variant of
the BSP tree in which the orientations of the partitioning planes are chosen
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Figure 5.3: A taxonomy of recursive hierarchical space partitioning struc-
tures. The arrows in the diagram denote the relation “is a generalization
of”.

from a finite set of orientations, similar to DOPs, may be useful in some
applications. We refer to this type of BSP tree as discrete-orientation BSP
(DOBSP) tree. Representing cell structures using DOBSP trees requires
less storage than using general BSP trees, since in a DOBSP tree the parti-
tioning plane orientations are described by an index number rather than
a 3D vector. Figure 5.3 shows a taxonomy of recursive hierarchical space
partitioning structures.

BSP trees can be used to represent cell structures in which objects are
maintained. However, a more interesting application of BSP trees is found
in representing non-convex polyhedra, as an alternative to boundary rep-
resentations. As we saw in Chapter 3, a non-convex polyhedron can be
represented as the union of a subset of cells in a binary space partitioning.
For this purpose, the leaves of the BSP tree are labeled in or out, depending
on whether the corresponding cell lies inside or outside the polyhedron
[95], as depicted in Figure 5.4.
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Figure 5.4: A polygon and its BSP tree representation

In [73], an algorithm is presented for performing boolean operations
on a pair of polyhedra represented by BSP trees. The result of a boolean
operation, which is also represented by a BSP tree, is obtained by merg-
ing the two BSP trees. A merge of a pair of BSP trees involves splitting
one of the trees according to the root partitioning plane of the other tree,
and recursively merging the split trees with the corresponding children of
the latter tree. In order to allow efficient splits, each BSP tree maintains,
besides a partitioning plane, also a convex polygon in each internal node.
The polygon represents the intersection of the partitioning plane and the
convex region associated with the node, and is explicitly represented by a
list of vertices.

This merge operation can be used for efficiently computing the inter-
section of a pair of non-convex polyhedra. The algorithm can also be ap-
plied to testing the intersection between a pair of polyhedra, with some
adaptions for speed to allow early exit in case an intersection is found
[74]. However, note that these adaptions will only marginally improve
performance for intersection testing, since it seems that the BSP tree split,
the most expensive operation in the intersection computation, cannot be
removed or simplified for the intersection detection problem.

BSP tree representations of polyhedra are expensive with respect to
the storage requirements, especially the ones used for fast tree merges,
which maintain a convex polygon in the internal nodes. In [79], Paterson
and Yao show how to construct a BSP tree of O(n?) nodes, representing
a polyhedron of n facets. Furthermore, they prove that this bound is op-
timal, i.e., polyhedra exist for which the smallest BSP tree representation
still has (n?) nodes. Due to their large storage usage and high computa-
tional cost, we consider it therefore unlikely that collision detection algo-
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rithms based on BSP tree representations will outperform algorithms that
use boundary representations.

5.1.4 Discussion

A drawback of space partitioning methods is the fact that objects that
straddle cell boundaries are maintained in multiple cells. This may lead to
structures with sizes that exceed the number of stored objects by orders of
magnitude. Maintaining multiple references to the same object results in
either a lot of intersection tests being repeated for the same pair of objects,
or additional overhead for keeping record of the pairs of objects that have
been tested for intersection.

Hence, it seems better to store objects in search structures in such a
way that each object is referred to only once. For hierarchical space par-
titioning structures, this can be achieved by maintaining objects in all the
nodes rather than in the leaves only. Each object is maintained in the node
corresponding to the smallest region that encloses the object. The interval
tree is an example of such a data structure for one-dimensional space, and
is used for efficiently reporting all intervals in a set that intersect a query
interval [80].

However, when we allow objects to be stored in all nodes rather than
leaf nodes only, intersection testing among objects is a little more compli-
cated, since intersecting objects may be maintained at different levels in
the tree. For finding all intersecting objects, we fall back on range queries
in which we use the objects” axis-aligned bounding boxes as query win-
dows. The computational cost of a range query depends on the number
of objects maintained in nodes that are visited during the query. A node is
visited if the corresponding region overlaps with the query box.

A problem that occurs when objects are maintained in this way in re-
cursive space partitioning trees (octrees, k-d trees, BSP trees), is that small
objects may be stored at all levels in the tree, i.e., there is no upper bound
for the extent of the region in relation to the size of the object stored in the
corresponding node. Figure 5.5(a) illustrates this property for a quadtree.
Hence, the upper levels of the tree may contain an unacceptable number
of objects. Since the nodes at the upper levels are visited more often than
the nodes close to the leaves, the range queries are slowed down consider-
ably by a lot of small objects at upper levels. We say ‘slowed down’, since
these objects have a low probability of intersecting with the query object,
due to their size. Therefore, most of the intersection tests on small objects
at upper levels are wasted.
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(a) Quadtree (b) Fieldtree

Figure 5.5: Two spatial data structures used in GIS. In both structures the
objects are stored in the node corresponding to the smallest region enclos-
ing the object. Notice that in the quadtree small objects are stored at all
levels, whereas in the fieldtree small objects are stored close to the leaves
only.

A data structure known from geographic information systems (GIS)
literature, referred to as fieldtree, can be used to solve the problem of hav-
ing small objects stored in nodes at upper levels [34]. In a fieldtree, a node
may have up to nine children, and a child node may have multiple parents,
hence, a fieldtree is actually a directed acyclic graph (DAG). The extent of
a child’s region is half the extents of its parents’ regions as in a quadtree,
however, the different levels of the tree are shifted with respect to their
parent nodes. The shift of region boundaries allows objects to be stored
in a node for which the size of the region is approximately the size of the
objects. Thus, large objects are stored close to the root, whereas smaller
objects are stored close to the leaves. Figure 5.5(b) shows how objects are
stored in a fieldtree.

A generalization of the fieldtree to three-dimensional space is possible,
and may be useful as an alternative to the voxel grid. However, we expect
such a structure to be less useful as a dynamic data structure, since the
time complexity of adding and deleting nodes in the tree is quite high due
to the fact that the children may have multiple parents.

To conclude this survey of space partitioning structures, we present an
overview of structures that are, or may be, used for speeding up collision
detection. Depending on the type of intersection problem, we recognize
the following solutions using space partitioning techniques:
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e Finding all intersecting pairs among a set of moving objects.

— Evenly distributed objects of more or less equal size.

Voxel grid [107, 58] Merits: fast access and update times, low
storage cost. Drawbacks: bad performance due to multiple
references to objects that straddle cell boundaries.

— Changes in local densities of objects over time.

Octree, k-d tree, (DO)BSP tree Merits: adaptive to differences
in local densities of objects, low storage cost (octree, k-d
tree, DOBSP tree). Drawbacks: bad performance when ob-
jects straddle cell boundaries: either maintain objects in the
leaves (cells) only and keep multiple references to objects,
or maintain objects in all nodes, possibly resulting in small
objects being stored close to the root, and thus inefficient
range queries.

— Wide variations in object sizes.

3D fieldtree Merits: fast query times due to single references
to object, and size-sensitive storage of objects. Drawbacks:
complex structure and algorithms, fairly high storage cost.

e Finding intersecting primitives between a pair of complex models.

- Rigid models

Voxel grid [37, 38] Merits: fast access, low storage cost. Draw-
backs: bad performance due to multiple references to ob-
jects that straddle cell boundaries.

k-d tree [106] Merits: adaptive, low storage cost. Drawbacks:
bad performance when objects straddle cell boundaries.

— Deformable models

Octree [68, 88] Merits: fast construction times, low storage cost.
Drawbacks: bad performance when many objects straddle
cell boundaries.

In the following section, we discuss spatial data structures in which the
set of objects in a model is partitioned rather than the space in which the
objects are placed.
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5.2 Model Partitioning

Model partitioning is often a better choice than space partitioning, since
model partitioning structures do not suffer from the problem of having
multiple references to the same object. The basic strategy is to subdivide a
set of objects into geometric coherent subsets, and compute a tight-fitting
bounding volume for each subset of objects, such that in intersection tests,
subsets of objects can be quickly rejected from intersection testing depend-
ing on whether their bounding volumes overlap. In the following section
we discuss a number of commonly used bounding volume types.

5.2.1 Bounding Volumes

A bounding volume of a model is a primitive shape that encloses the
model and has the following desired properties:

1. A bounding volume should fit the model as tightly as possible in
order to have a low probability of a given query object intersecting
the volume but not the model.

2. Overlap tests between bounding volumes should be computation-
ally cheap. In particular, cheaper than testing the enclosed models
for intersection.

3. A bounding volume should be representable using a small amount
of storage, thus, the additional storage space used by the spatial data
structure is small in comparison to the storage used by the model.

4. The cost of computing a bounding volume for a given model should
be low. This property is relevant only if the volume is recomputed
regularly.

Examples of bounding volume types are: spheres, axis-aligned bound-
ing boxes (AABBs), discrete-orientation polytopes (DOPs), and oriented
bounding boxes (OBBs). An OBB'’s orientation is represented by a 3 x 3
matrix, which defines a local basis with respect to the model’s local co-
ordinate system. Although for rectangular OBBs, a quaternion represen-
tation of the orientation uses less storage space (4 vs. 9 scalars), a matrix
representation is more efficient in overlap tests [46].

Of the mentioned volume types, only spheres and OBBs are indepen-
dent of the model’s orientation. The extents of AABBs and DOPs are either
recomputed whenever the enclosed model is rotated, or set large enough,
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such that the model can be enclosed in all possible orientations. Comput-
ing the smallest AABBs and DOPs for sets of vertices can be done rea-
sonably fast. We simply compute the projections of the vertices on the
given axes and maintain the minimum and maximum value for each axis.
OBBs and spheres need to be recomputed only if the enclosed objects are
deformed or scaled, although we will present an application of OBBs fur-
ther on, in which the boxes are independent of nonuniform scalings of the
enclosed models.

For OBBs, finding the best orientation is quite complex, however, we
can get reasonably tight-fit boxes by applying heuristics. In [103], Wu
presents a method that uses multivariate analysis to find the principal
axes of the distribution of the vertices. The principal axes are mutually
orthogonal, and can therefore serve as a local basis for rectangular boxes.
This method results in tight-fit boxes for many models, however, for some
cases, such as the vertices of a cube, this method returns orientations that
are quite bad. Gottschalk proposes in [46] a heuristic that uses axes based
on the weighted spread of sample points on the surface of the convex hull
of the set of vertices in order to get a tight fit for a wider range of models.
Evidently, this method is much more expensive, since a convex hull com-
putation requires 6(n logn) time for n vertices.

Computing the smallest enclosing sphere can be done in expected lin-
ear time using a randomized algorithm [101], however the constant factor
of this algorithm is quite large. We can get a reasonable approximation of
the smallest sphere using the following heuristic presented in [103]. First,
we compute a local basis of principal axes as used for OBB computations.
For each axis i, we find the extreme vertices, i.e., the vertices pi ., pi,., for
which the projection on i is the minimum, respectively maximum, of all
vertices. We construct a tentative sphere with diameter the line segment
connecting the vertices p; ph,, for the axis i for which d(p . , pi,. ) is the
largest. Next, for each vertex that falls outside of the tentative sphere, we
expand the sphere such that it contains the vertex and the former sphere.

Table 5.1 shows an overview of the characteristics of the mentioned
bounding volume types. We see that a tighter fit is acquired at a higher
cost of storage space and processing time for overlap testing. The choice
of bounding volumes for a particular application depends on the shapes
and complexities of the enclosed objects, as well as the densities of the
objects in the space.

Let us discuss a real-life example of the use of bounding volumes on
the basis of the average time formula presented in Chapter 2. Recall that
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Volume || Fit | Cost overlap test (ops) | Storage (scalars)
Sphere || poor 11 4
AABB || poor : 9 6
k-DOP fair 3k C 2k
OBB good 200 (cf. [46]) 15

Table 5.1: A comparison of a number of bounding volume types. Here,
Cost denotes the cost of testing a pair of volumes for overlap in number of
primitive arithmetic operations, and does not include the cost of recom-
puting the volume after a rotation of the enclosed model.

the average time of a sequence of intersection tests can be expressed as
n
Tavg = Z P[fl - fie11Gi,
. i=1

where f; represent the event that test i fails, and C;, the average time
necessary for performing test i. A bounding volume overlap test fails iff
the volumes overlap.

For this example, we use a model of a torus composed of a large num-
ber of triangles. The torus has a major radius of 10 and a minor radius
of 2. The test is performed by placing a pair of tori randomly in space,
and testing them for intersection. The tori have arbitrary orientations. The
space size in which the tori are placed is determined by a cube in which
the centers of the tori are randomly positioned. By scaling the cube the
probability of an intersection can be tuned.

We first examine the use of a single bounding volume overlap test. The
average time formula for such a test is given by

Tavg = Cvolume + P [f Volume]Ctorus-

The cost of testing a pair of tori for intersection, denoted here by Ciorus,
depends on the number of triangles, but should at its best be in the order
of 10* operations for a torus composed of a hundred triangles, so for the
sake of our discussion let us assume Cionys = 10000 ops. Table 5.2 shows
the average times over 100,000 runs for a bounding sphere and an OBB.
The smallest sphere enclosing the torus has a radius of 12. The smallest
OBB has a size of 24 x 24 x 4. The cost of overlap testing can be found in
Table 5.1 for both volume types. We see that for both bounding volume

types the use of the overlap test is justified, since the average time when
' using the volume is smaller than Cigpys for the tested space sizes. Moreover,
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| Bounding sphere |
Cubessize | P [ fsphere] (%0) Ty (0ps)
100 4.6 471
20 98.7 9881
B OBB |
Cube size | P[foBBl (%) | Tavg (Ops)
100 4.1 610
20 86.9 8890

Table 5.2: Average performances of an intersection test on a pair of tori,
using a single bounding volume overlap test. The value of Cube size is the
length of the sides of the cube in which the centers of the tori are placed.

we see that the bounding spheres perform better than the OBBs when the
density is low, whereas OBBs perform better for high densities.

Often, it makes sense to use a combination of bounding volume types.
A cheap loose-fit volume type yields quick rejections of pairs of objects
that are at some distance of each other, and a tighter more expensive vol-
ume type is used for rejecting closer configurations of objects. The average
time formula for a test with two bounding volume types is given by

Tavg = Cvolume1 + P [f volumeI]Cvolumez + P [f volume; f volumez]ctorus-

We examine this idea using OBBs as the tight-fitting volumes in the second
bounding volume test. For the choice of the first volume we have several
options.

Our first option is to use a dynamic AABB enclosing the OBB. A dy-
namic AABB is recomputed for each placement of the torus. Although
the smallest AABB enclosing the torus is usually smaller than the smallest
AABB enclosing the OBB, we opt for the latter construction, since com-
puting the smallest AABB of an OBB is much cheaper than computing the
smallest AABB of the set of triangles that represents the torus. The small-
est AABB enclosing an OBB can be computed using 24 operations. For this
purpose, we compute the projections of the OBB onto the coordinate axes,
which takes 8 operations for each axis, as we saw in Chapter 3. Hence, the
total cost for performing an overlap test for a pair of AABBs is two times
24 operations for the AABB computations plus 9 operations for the actual
overlap test, which makes a total of 57 operations. See Table 5.3 for the
results of this experiment. Notice that this combined approach performs
better than the bounding sphere only for the high-density case, and better
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Dynamic AABB & OBB ]

Space size || P[faassl (%) | PLfaarsfoBsl (%) | Tavg (OpS) |
100 9.1 4.1 485
20 99.0 86.9 8945

| Fixed-size AABB & OBB |
Space size | P[faaesl (%) | PlfaasefoBs] (%) | Tave (OpPS)
100 7.8 3.9 415
20 100 86.9 8899

| Bounding sphere & OBB ]
Space size || P[f sphere ] (%) | PLf; spheref oBBl (%) Taye (OPS)
100 4.6 34 360
20 98.7 86.5 8858

Table 5.3: Average performances when combining two bounding volume

types

than the single OBB only for the low-density case.

Due to the recomputations, the cost of overlap testing for dynamic
AABBs is high compared to the cost for fixed-size AABBs, i.e., AABBs
that are set at a fixed-size that is large enough to enclose the model in each
configuration. An overlap test for fixed-size AABBs takes only 9 opera-
tions. Moreover, since the cost of computing the AABB is not an issue for
fixed-size AABBs, we can use the smallest fixed-size AABB of the model
rather than the model’s OBB. For the torus we use a fixed-size AABB with
sides of length 24. As can be seen in Table 5.3, the fixed-size AABB per-
forms better than the dynamic AABB for both space sizes, even though
the overlap test for fixed-size AABBs is wasted in the high-density case
(P[faaBB] = 100%, since two cubes of size 24 placed such that their cen-
ters lie in a cube of size 20 always overlap).

Finally, we tested a combination of a bounding sphere and an OBB.
Table 5.3 shows that this is the best combination for our torus model. The
sphere-OBB test shows the best performances for both space sizes of all the
tests performed in this example. Also, notice that there are configurations
of tori for which the bounding spheres do not overlap but the OBBs do
overlap. This is shown by the fact that P[ Ssphere foBB] < P[ foBB].

Generally speaking, bounding spheres yield in most cases better per-
formance than fixed-size AABBs for intersection testing of objects that
have three rotational degrees of freedom, since in this case, the smallest
bounding sphere is enclosed by the smallest fixed-size AABB, and thus,
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is tighter than the AABB, whereas the cost of a sphere intersection test is
only slightly higher than the cost of an AABB intersection test.

5.2.2 Collections of Bounding Volumes

Although bounding volume tests are relatively cheap, testing all (}) pairs
in a collection of n bounding volumes still gives rise to a lot of computa-
tions. In cases where there is some geometric coherence in the configur-
ation of objects, only a small number of all pairs of bounding volumes are
overlapping. Hence, in these cases, an output-sensitive algorithm for find-
ing all overlapping pairs of volumes should perform better than the naive
O (n?) test-all-pairs algorithm.

An output-sensitive algorithms for n AABBs has been presented by Six
and Wood in [87]. Their algorithms has a time complexity of O(nlog®n +
k), where k is the number of overlapping pairs of boxes, and requires
O(nlog®n) space. The algorithm applies a space-sweeping technique, i.e.,
a plane orthogonal to a given coordinate axis is swept from —oo to oo it-
erating over the coordinates corresponding to the sides of the boxes. As
the plane is swept, information pertaining to the boxes that are cut by the
plane is maintained data structures. The used data structures, a segment
tree and a range tree [80], allow fast insertion, deletion and query oper-
ations, such that a sub-quadratic time bound can be attained. A similar
technique is applied in [54] for detecting an intersection among n spheres.

Algorithms that apply space-sweeping essentially have a worst-case
lower time bound of Q(n logn) since it is necessary to sort the input with
respect to a given coordinate axis. However, if frame coherence is high,
the sorted sequence of box coordinates from a previous frame is likely to
be nearly sorted in the current frame, in which case sorting will take only
linear time using insertion sort [83]. Baraff exploits this idea in an incre-
mental algorithm for maintaining the set of overlapping AABBs during
an animation [4].

In his approach, the endpoints of the intervals of projection of each box
onto the three coordinate axes, described by [b7, €1, [b}, €]] and [, ¢7]
for the ith box, are maintained as three sorted sequences corresponding to
the three coordinate axes. Each endpoint maintains, besides its coordinate,
also a reference to its box, and whether it is a lower or upper endpoint of
the interval. In each frame, the coordinates of the endpoints are updated,
and the three sequences are sorted using insertion sort. ,

Basically, insertion sort is performed as follows. Assume that the se-
quence is sorted up to a certain element. This element is found to be less
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Figure 5.6: Sorting a sequence of endpoints. Box 2 moves and causes two
swaps in the sequence of x-coordinates. The swap of b and e} indicates
that the intervals of Box 1 and 2 onto the x-axis cease to overlap. The swap
of ¢ and b3 indicates that the intervals of Box 2 and 3 begin to overlap.

than its predecessor, and has to be inserted in the segment of the sequence
from the head up to the current position. This insertion is performed by
swapping the element with its predecessor until an element is reached that
is less than the current element. This process continues until we reach the
end of the sequence.

When during a sort a lower endpoint of one box and an upper endpoint
of another box are swapped, the intervals of the two boxes corresponding
to the coordinate axis will either start or cease to overlap. Note that in-
sertion sort performs swaps of adjacent elements only, thus the only inter-
vals that may be affected by the swap are the ones that correspond to the
swapped endpoints. Figure 5.6 illustrates how changes in overlap status
of box intervals can be detected. When a pair of intervals on a coordinate
axis change from non-overlapping to overlapping, the corresponding pair
of boxes are tested for overlap with respect to the other two coordinate
axes. If the boxes overlap, then the pair is inserted in a set of overlapping
pairs of boxes. When a pair of intervals cease to overlap, the correspond-
ing pair of boxes, are removed from the set of overlapping pairs of boxes
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in case the boxes were previously overlapping.

In order to keep the times of insertions and deletions of pairs of boxes
small, the set of overlapping box pairs is best implemented using a bal-
anced binary-search tree (AVL tree, red-black tree) or a hash table [64].
Each swap can be performed in constant time, except for the swaps that
result in an insertion or deletion of a box pair. Insertions and deletions
of box pairs take O(logk) time for a set of k box pairs represented by a
balanced binary search tree. Since a nearly sorted sequence can be sorted
in linear time, we find that when frame coherence is high, the cost of up-
dating the set of overlapping box pairs is O(n + clogk), where c is the
total number of box pairs whose overlap status changed with respect to
the previous frame. ,

Often, only a few of the objects in a scene are moving at a given time. In
order to exploit this, we present an adaption of Baraff’s algorithm that al-
lows update of the set of overlapping box pairs in time linear in number of
moving boxes. Instead of performing an insertion sort on the sequences of
endpoints once for all endpoints, we propose an incremental approach in
which insertions are performed immediately for each displaced endpoint.

Each time an endpoint is assigned a new position, the endpoint is im-
mediately inserted at the correct position in the sequence. Contrary to
insertion sort, where insertion are only done downward, we allow an in-
sertion to be performed upward as well as downward. We are able to do
this since both the sequence segments below and above the displaced end-
point are always sorted, whereas with insertion sort only the segment be-
low the current endpoint is sorted. In this way, the update time per frame
is expected to be O (m + clogk) when frame coherence is high, where m is
the number of moving objects.

In order to keep the overhead involved in updating the endpoints low,
we implement the sequences using doubly-linked lists. Each endpoint
maintains pointers to its successor and its predecessor in the list. In this
way, each object can maintain a direct reference to the endpoints of its
AABB, without the necessity of updating the references whenever the end-
points’ positions in the sequence are changed. Figure 5.7 illustrates this
~ implementation.

5.2.3 Bounding Volume Hierarchies

We can ‘capture’ geometric coherence in a model by means of a bound-
ing volume hierarchy. A bounding volume hierarchy is a tree structure in
which primitives are stored in the leaves. Each node maintains a bounding
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Figure 5.7: The incremental endpoint sort algorithm. For each coordinate
axis, the endpoints of each object’s AABB are maintained in sorted doubly-
linked lists.

volume of the subset of primitives represented by the node. The bounding
volumes of the children of a node may, and often do, overlap. Examples
of bounding volume hierarchies are sphere trees [78, 56], oriented bound-
ing box (OBB) trees [46], and discrete-orientation polytope (DOP) trees
[59, 105].

The benefits of using bounding volume hierarchies are the fast query
times for intersection testing, and the linear space requirements with re-
spect to the number of objects in the model. The major drawback is the
high cost of constructing a bounding volume hierarchy, and maintaining a
hierarchy under model changes. Therefore, bounding volume hierarchies
are generally used only for complex rigid models, for which construction
is performed only once as a preprocessing step, although application of
bounding volume hierarchies to collision detection among freely moving
objects has been considered [99]. Further on, we will present a new ap-
plication of AABB trees to collision detection between complex models
undergoing deformation.

Anintersection test between two models represented by bounding vol-
ume hierarchies is performed by recursively testing pairs of nodes. The
intersection test handles the following cases:



5.2. MODEL PARTITIONING 97

1. If the bounding volumes of the nodes do not intersect then false is
returned.

2. If both nodes are leaves then the primitives are tested for intersection
‘and the result of the test is returned.

3. If one of the nodes is a leaf and the other an internal node, then the
leaf node is tested for intersection with each of the children of the
internal node.

4. If both nodes are internal nodes then the node with smaller volume
is tested for intersection with the children of the node with the larger
volume.

The latter heuristic choice of first unfolding the node with the largest vol-
ume results in the largest reduction of total volume size in the following
bounding volume tests, thus the lowest probability of following bounding
volume tests returning an intersection.

Note that we do not perform volume-primitive intersection tests.
Volume-primitive tests are often as expensive as primitive-primitive tests,
and have a high probability of failure, i.e., the chance of a volume-
primitive test returning false is rather small. Hence, adding volume-
primitive tests as a pre-step in case 2 of the recursive intersection test is
likely to worsen the performance, rather than improve it.

The total cost of testing a pair of models represented by bounding vol-
ume hierarchies is expressed in the following cost function [100, 46]:

Tiotal = Nb*cb+Np*Cp/

Tiotar  is the total cost of testing a pair of models,

Np s the number of bounding volume pairs tested for intersection,
Cp  is the cost of testing a pair of bounding volumes for intersection,
Np  is the number of primitive pairs tested for intersection, and

Cp  isthe cost of testing a pair of primitives for intersection.

The parameters in the cost function that are affected by the type of bound-
ing volume are Np, Np, and Cp. A tight-fitting bounding volume type,
such as the OBB, results in a low N, and N p, but has a relatively high Cp,
whereas an A ABB will result in more tests being performed, but the value
of Cp will be lower.

In recent work [46], AABB trees have been shown to yield worse per-
formance than OBB trees for rigid models. However, we will present a
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way to speed up overlap testing between relatively oriented boxes of a
pair of AABB trees. This results in performance for the AABB tree that is
close to the OBB tree’s performance for collision detection of rigid models.

5.2.4 AABB Trees vs. OBB Trees

The AABB tree that we consider is, as the OBB tree described in [46], a
binary tree. The two structures differ with respect to the freedom of place-
ment of the bounding boxes: AABBs are aligned to the axes of the model’s
local coordinate system, whereas OBBs can be arbitrarily oriented. The
added freedom of an OBB is gained at a considerable cost of storage space.
An OBB is represented using 15 scalars, whereas an AABB only requires 6
scalars (for position and extent). Hence, an AABB tree of a model requires
roughly half as much storage space as an OBB tree of the same model.

Both tree types are constructed top-down, by recursive subdivision. At
each recursion step, the smallest bounding box of the set of primitives is
computed, and the set is split by ordering the primitives with respect to
a well-chosen partitioning plane. This process continues until each subset
contains one element. Thus, a bounding box tree for a set of n primitives
has n leaves and n — 1 internal nodes. ‘

At each recursion step, we choose the partitioning plane orthogonal to
the longest axis of the bounding box. In this way, we get a ‘fat’ subdivi-
sion. In general, fat boxes, i.e., cube-like rather than oblong, yield better
performance in intersection testing, since under the assumption that the
boxes in a tree mutually overlap as little as possible, a given query box can
overlap fewer fat boxes than thin boxes.

We position the partitioning plane along the longest axis, by choosing
8, the coordinate on the longest axis where the partitioning plane intersects
the axis. We then split the set of primitives into a negative and positive
subset corresponding to the respective halfspaces of the plane. A primi-
tive is classified as positive if the midpoint of its projection onto the axis is
greater than §, and negative otherwise. Figure 5.8 shows a primitive that
straddles the partitioning plane depicted by a dashed line. This primi-
tive is classified as positive. It can be seen that by using this subdivision
method, the degree of overlap between the AABBs of the two subsets is
kept small.

For choosing the partitioning coordinate § we tried several heuristics.
Our experiments with AABB trees for a number of polygonal models show
that, in general, the best performance is achieved by simply choosing & to
be the median of the AABB, thus splitting the box in two equal halves.
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Figure 5.8: The primitive is classified as positive, since its midpoint on the
coordinate axis is greater than §.

Using this heuristic, it may take O (n?) time in the worst case to build an
AABB tree for n primitives, however, in the usual case where the primi-
tives are distributed more or less uniformly over the box, building an
AABB tree takes only O(nlogn) time.

Other heuristics we have tried, that didn’t perform as well, are: (a)
subdividing the set of primitives in two sets of equal size, thus building
an optimally balanced tree, and (b) building a halfbalanced tree, i.e., the
larger subset is at most twice as large as the smaller one, and the overlap
of the subsets” AABBs projected onto the longest axis is minimized.

Occasionally, it may occur that all primitives are classified to the same
side of the plane. This will happen most frequently when the set of primi-
tives contains only a few elements. In this case, we simply split the set in
two subsets of (almost) equal size, disregarding the geometric location of
the primitives.

Building an AABB tree of a given model is faster than building an OBB
tree for that model, since the estimation of the best orientation of an OBB
for a given set of primitives requires additional computations. We found
that building an OBB tree takes about three times as much time as building
an AABB tree.

Intersection Testing

Since for both tree types the boxes that are tested for intersection may be
arbitrarily oriented, we need an overlap test for relatively oriented boxes.
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A fast overlap test for oriented boxes is presented by Gottschalk in [46].
We will refer to this test as the separating-axes test (SAT). A separating
axis of two boxes is an axis for which the projections of the boxes onto the
axis do not overlap. The existence of a separating axis for a pair of boxes
sufficiently classifies the boxes as disjoint. As we saw in Chapter 4, for
any disjoint pair of convex three-dimensional polytopes a separating axis
can be found that is either orthogonal to a facet of one of the polytopes, or
orthogonal to an edge from each polytope [45]. This results in 15 potential
separating axes that need to be tested for a pair of oriented boxes (3 facet
orientations per box plus 9 pairwise combinations of edge directions). The
SAT exits as soon as a separating axis is found. If none of the 15 axes
separate the boxes, then the boxes overlap.

We refer to the original paper [46] for details on how the SAT is imple-
mented such that it uses the least number of operations. For the following
discussion, it is important to note that this implementation requires the
relative orientation represented by a 3 x 3 matrix, and its absolute value,
i.e., the matrix of absolute values of matrix elements, to be computed be-
fore performing the 15 axes tests.

In general, testing two AABB trees for intersection requires more box
overlap tests than testing two OBB trees of the same models, since the
smallest AABB of a set of primitives is usually larger than the smallest
OBB. However, since each tested pair of boxes of two OBB trees normally
has a different relative orientation, the matrix operations for computing
this orientation and its absolute value are repeated for each tested pair of
boxes, whereas for AABB trees the relative orientation is the same for each
tested pair of boxes, and thus needs to be computed only once. Therefore,
the performance of an AABB tree might not be as bad as we would expect.

In order to compare the performances of the AABB tree and the OBB
tree, we have conducted an experiment, in which a pair of models were
placed randomly in a bounded space and tested for intersection. The
random orientations of the models were generated using the method de-
scribed by Shoemake in [86]. The models were positioned by placing the
origin of each model’s local coordinate system randomly inside a cube.
The probability of an intersection is tuned by changing the size of the cube.
For all tests, the probability was set to approximately 60%.

For this experiment we used Gottschalk’s RAPID package [44] for the
OBB tree tests. For the AABB tree tests, we used a modified RAPID, in
which we removed the unnecessary matrix operations. We experimented
with three models: a torus composed of 5000 triangles, a slenderly shaped
X-wing space craft composed of 6084 triangles, and the archetypical teapot
model composed of 3752 triangles, as shown in Figure 5.9. Each run per-
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(a) X-wing (b) Teapot

Figure 5.9: Two models that where used in our experiments

forms 100,000 random placements and intersection tests, resulting in ap-
proximately 60,000 collisions for all tested models. Table 5.4 shows the
results of the tests for both the OBB tree and the AABB tree. The tests were
performed on a Sun UltraSPARC-I (167MHz), compiled using the GNU
C++ compiler with ‘-O2’ optimization.

The results show that, an AABB tree requires approximately twice as
much box intersection tests as an OBB tree, however, the time used for
intersection testing is in two cases only 50% longer for AABB trees. The
exception here is the torus model, for which the AABB tree uses almost
three times as much time as the OBB tree. Apparently, the OBB tree ex-
cels in fitting models that have a smooth surface composed of uniformly
distributed primitives. Furthermore, we observe that, due to its tighter fit,
the OBB tree requires much fewer triangle intersection tests (less than two
triangle intersection tests per placement, for the torus and the teapot).

For both tree types, the most time consuming operation in the inter-
section test is the SAT, so let us see if there is room for improvement. We

found that, in the case where the boxes are disjoint, the probability of the
SAT exiting on an axis corresponding to a pair of edge directions is about
15%. Figure 5.10 shows a distribution of the separating axes on which
the SAT exits for tests with a high probability of the models intersecting.
Moreover, for both the OBB and the AABB tree we found that about 60%
of all box overlap tests resulted in a positive result. Thus, if we remove
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Figure 5.10: Distribution of axes on which the SAT exits in case of the
boxes being disjoint. Axes 1 to 6 correspond to the facet orientations of the
boxes, and axes 7 to 15 correspond to the combinations of edge directions.
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[ OBB tree ]
Model Ny | Cp Ty N, | Cp Ty | Tom
Torus 10178961 | 49| 49.7 | 197314 | 15| 29| 526
X-wing || 48890612 | 4.6 | 223.8 | 975217 | 10 | 10.2 | 234.0
Teapot || 12025710 [ 4.8 | 57.6 | 186329 | 14| 2.7 | 60.3
AABB tree
Model Np | Cp Ty N, | Cp Ty | Tt
Torus 32913297 | 3.7 | 122.3 | 3996806 | 7.2 | 28.7 | 151.0
X-wing (| 92376250 | 3.1 | 288.8 | 8601433 | 7.1 | 61.3 | 350.1
Teapot | 25810569 | 3.3 | 84.8 | 1874830 | 7.4 | 13.9 | 98.7

Table 5.4: Performance of the AABB tree vs. the OBB tree, both using the
SAT. Np and N, are respectively the total number box and triangle inter-
section tests, Cj and C), the per-test times in microseconds for respectively
the box and triangle intersection test, T, = N}, * C}, is the total time in sec-
onds spent testing for box intersections, 7, = N, * C,, is the total time used
for triangle intersection tests, and finally Ty, is the total time in seconds
for performing 100,000 intersection tests.

from the SAT the nine axis tests corresponding to the edge directions, we
will get an incorrect result only 6% (40% of 15%) of the time.

Since the box overlap test is used for quick rejection of subsets of primi-
tives, exact determination of a box overlap is not necessary. Using a box
overlap test that returns more overlaps than there actually are, results in
more nodes being visited, and thus more box overlap and primitive in-
tersection tests. Testing fewer axes in the SAT reduces the cost of a box
overlap test, but increases the number of box and primitive pairs being
tested. Apparently, there is a trade-off of per-test cost against number of
tests, when we use a SAT that tests fewer axes. '

In order to examine whether this trade-off is in favor of the perfor-
mance, we repeated the experiment using a SAT that tests only the six
facet orientations. We refer to this test as the SAT lite. The results of this
experiment are shown in Table 5.5. We see a performance increase of about
15% on average for the AABB tree, whereas the change in performance for
the OBB tree is only marginal. '

We found that the AABB tree’s performance benefits from a cheaper
but sloppier box overlap test in all cases, whereas the OBB tree shows
hardly any change in performance. This is explained by the higher cost of
a box overlap test for the OBB tree due to extra matrix operations.



104 CHAPTER 5. SPATIAL DATA STRUCTURES

OBB tree
Model Ny | Cy Ty Np | Cp Ty | Tiotat
Torus 13116295 | 3.7 | 47.9 371345 12| 44| 523
X-wing || 65041340 | 3.4 | 221.4 | 2451543 | 9.3 | 22.9 | 2443
Teapot 14404588 | 3.5 | 50.8 279987 { 13| 35| 543
B AABB tree |

Model Ny | Cp Ty N, | Cp Ty | Tl
Torus 40238149 | 2.4 | 96.1 | 5222836 | 7.4 [ 38.4 | 134.5
X-wing || 121462120 | 1.9 | 236.7 | 13066095 | 7.0 | 91.3 | 328.0
Teapot 30127623 | 2.1 | 62.5| 2214671 7.0 | 15.6 | 78.1

Table ‘5.5: Performance of AABB tree vs. OBB tree, both using the SAT lite

We see that despite our efforts to improve the performance of the in-
tersection test for AABB trees, OBB trees still beat AABB trees when it
comes to intersection testing times for rigid models. Although, construc-
tion times and storage usage are in favor of the AABB tree, we regard these
issues to be of less importance in our application domain. However, we
will present a new scheme for intersection testing of deformable models,
for which the AABB tree is found to be the data structure of choice.

5.2.5 AABB Trees and Deformable Models

AABB trees lend themselves quite easily to be used for deformable models.
In this context, a deformable model is a set of primitives in which the
placements and shapes of the primitives within the model’s local coordi-
nate system change over time. A typical example of a deformable model
is a triangle mesh in which the local coordinates of the vertices are time-
dependent.

Instead of rebuilding the tree after a deformation, it is usually a lot
faster to refit the boxes in the tree. The following property of AABBs al-
lows an AABB tree to be refitted efficiently in a bottom-up manner. Let §
be a set of primitives and ST, S, subsets of S such that ST U §~ = S, and
let BT and B~ be the smallest AABBs of respectively St and S, and B,
the smallest AABB enclosing BT U B~. Then, B is also the smallest AABB
of S. This property is illustrated in Figure 5.11. Of all bounding volume
types we have seen so far, AABBs share this property only with DOPs, and
does not hold for OBBs.

This property of AABBs yields a straightforward method for refitting
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- Figure 5.11: The smallest AABB of a set of primitives encloses the smallest
AABBs of the subsets in a partition of the set.

a hierarchy of AABBs after a deformation. First the bounding boxes of the
leaves are recomputed, after which each parent box is recomputed using
the boxes of its children in a strict bottom-up order. This operation may
be implemented as a postorder tree traversal, i.e., for each internal node,
the children are visited first, after which the bounding box is recomputed.
However, in order to avoid the overhead of recursive function calls, we
propose a different implementation.

In our implementation the leaves and the internal nodes of an AABB
tree are allocated as arrays of nodes. We are able to do this, since the num-
ber of primitives in the model is static and a priori known. Furthermore,
the tree is built such that each internal child node’s index number in the
array is greater than its parent’s index number. In this way, the internal
nodes are refitted properly by iterating over the array of internal nodes in
reversed order. Since refitting an AABB takes constant time for both inter-
nal nodes and leaves, an AABB tree is refitted in time linear in the num-
ber of nodes. Refitting an AABB tree of a triangle mesh takes less than
48 arithmetic operations per triangle. Experiments have shown that for
models composed of over 6000 triangles, refitting an AABB tree is about
ten times as fast as rebuilding it.

There is, however, a drawback to this method of refitting. Due to rel-
ative position changes of primitives in the model after a deformation, the
boxes in a refitted tree may have a higher degree of overlap than the boxes
in a rebuilt tree. Figure 5.12 illustrates this effect for the model in Fig-
ure 5.11. A higher degree of overlap of boxes in the tree results in more
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B B

(a) Refitted (b) Rebuilt

Figure 5.12: Refitting vs. rebuilding a model after a deformation

nodes being visited during an intersection test, and thus, worse perfor-
mance for intersection testing.

We observe a higher degree of overlap among the boxes in a refit-
ted tree mostly for radical deformations such as excessive twists, features
blown out of proportion, or extreme forms of self-intersection. However,
for deformations that keep the adjacency relation of triangles in a mesh
intact, i.e., the mesh is not torn up, we found no significant performance
deterioration for intersection testing, even for the more severe deforma-
tions. This is due to the fact that the degree of overlap increases mostly for
the boxes that are maintained high in the tree, whereas most of the boxes
that are tested are the ones that are maintained close to the leaves.

We ran some tests to see how the time used for refitting an AABB tree
for a deformable model compares to the intersection testing time. We
found that on our testing platform, refitting a triangle mesh composed
of a large number (> 1000) of triangles takes 2.9 microseconds per trian-
gle. For instance, for a pair of models composed of 5000 triangles each,
refitting takes 29 milliseconds, which is more than 10 times the amount of
time it takes to test the models for intersection. Hence, refitting is likely to
become the bottleneck if many of the models in a simulated environment
are deformed and refitted in each frame. However, for environments with
many moving models, in which only a few are deformed in each frame,
refitting will not take much more time in total than intersection testing.
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Operation Torus | X-wing | Teapot
(Re)build an OBB tree 0.35s 0.46s | 0.27s
Build an AABB tree 0.11s 0.18s | 0.08s
Refit an AABB tree 15ms 18ms | 1lms
Test a pair of OBB trees || 0.5ms | 2.3ms | 0.6ms
Test a pair of AABB trees || 1.3ms | 3.3ms | 0.8ms

Table 5.6: Comparing the times for a number of operations

In comparison to a previous algorithm for deformable models pre-
sented in [88], the algorithm presented here is expected to perform bet-
ter for deformable models that are placed in close proximity. For these
cases, both algorithms show a time complexity that is roughly linear in
the number of primitives. However, our approach has a smaller constant
(asymptotically 48 arithmetic operations per triangle for triangle meshes).
Moreover, our algorithm is better suited for collision detection among a
mix of rigid and deformable models, since it is linear in the number of
primitives in the deformable models only.

We conclude with a comparison of the performance of the AABB tree
vs. the OBB tree for deformable models. Table 5.6 presents an overview of
the times we found for operations on the two tree types. We see that for
deformable models, the OBB's faster intersection test is not easily going
to make up for the high cost of rebuilding the OBB trees, even if only a
few of the models are deformed. For these cases, AABB trees, which are
refitted in less than 5% of the time it takes to rebuild an OBB tree, will yield
better performance, and are therefore the preferred method for collision
detection of deformable models.



108 CHAPTER 5. SPATIAL DATA STRUCTURES



Chapter 6
Design of SOLID

“Our way is not soft grass. It's a mountain path with lots of rocks.”
Ruth Westheimer

In this chapter we discuss the design of SOLID, which is an acronym for
Software Library for Interference Detection. We discuss the goals and con-
straints involved in the design of SOLID, and give a brief description of its
functionality. The major design decisions are motivated, and some imple-
mentation details are discussed. We evaluate the current version of SOLID
(version 2.0) with respect to the goals that were set out. Finally, we discuss
the differences between version 1.0 and 2.0 of SOLID, and look into some
C++ coding details.

6.1 Requirements

Our goal is to design a general-purpose collision detection library for in-
teractive 3D computer graphics. The library should provide a simple, yet
versatile interface to the application program. Furthermore, in order to fa-
cilitate remote collision detection, i.e., performing collision detection on a
different computer than the one that executes the application program, the
application program interface (API) should allow low-bandwidth data
exchange between the application program and the library. We often re-
fer to an application program as client, expressing this remote processing
concept.

Remote collision detection may be applied to release the computer on
which the application program runs from the task of performing collision
detection. This may be done in order to gain performance in other tasks.
Tasks that require a lot of computations, such as rendering, compete with

109
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collision detection for processor and/or bus-access time, and may there-
fore benefit from remote collision detection.

We aim at providing collision detection for all shapes and motions de-
scribed using VRML [8]. The major issues that need to be addressed in
order to achieve compliance with VRML are:

e Models are built using VRML primitive shapes, such as boxes, cones,
cylinders, spheres, and complex shapes, represented by soups of
points, line segments, and polygons.

e Objects are instances of shapes, i.e., a shape may be used to instanti-
ate multiple objects. This requirement captures the DEF/USE mech-
anism of VRML. ‘

e The types of movement should be as general as possible. Mostly
used are rigid motions (translations and rotations), but also defor-
mations of complex shapes are possible in VRML. In order to al-
low instances of a shape at different scales, we also need to support
nonuniform scalings. :

Furthermore, the library should allow the collision handling to be de-
fined by the application program and should compute different types of
response data depending on the needs of the application program. In par-
ticular, response data which is used for physics-based simulations, such as
approximations of contact points and a contact plane, should be computed
by the library.

We also address issues such as performance, accuracy, storage usage,
and versatility, which express quality, rather than functionality. The fol-
lowing design constraints determine the usefulness of the library for gen-
eral purposes, and thus, should receive much attention in the design.

o The library should perform collision detection of complex environ-
ments at interactive rates. We aim at performance that would allow
ten to twenty moving objects composed of thousands of primitives
to be tested for collisions in a few hundredths of a second on current
high-performance workstations.

e The library should detect collisions accurately. This requires that the
configurations of objects processed by the library are identical to the
configurations maintained by the client, and that the used algorithms
for intersection testing are sufficiently accurate.
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e The library should not use too much storage. What is considered too
much is a rather fuzzy topic. As a rule of thumb we impose that the
amount of storage used by the library is asymptotically linear in the
number of primitives in the shape representations, with a constant
factor that is roughly a few hundred bytes per primitive.

e The library should not impose constraints on the data structures that
are used by the client. The client should be free in the choice of shape
representations used for the different tasks. In particular, the library
should allow the client to choose a shape representation for collision
detection that differs from the representation used for other tasks,
such as rendering. This is useful for scaling down the accuracy of
the collision detection in favor of the performance by using simpler
shapes. Also, if we know a priori that parts of a shape will never
collide with any object, for instance the hands of a watch will never
collide with objects outside the watch, we may leave out these parts
in the shape representation for collision detection.

6.2 Overview of SOLID

This section provides an overview of the SOLID framework. The design
decisions are motivated in Section 6.3.

SOLID is a true software library, i.e., a collection of functions that can
be linked to and used by application programs. The functions are referred
to as commands. The names and types of these commands, as well as the
data types that are used as input and output for these commands, com-
prise the APL SOLID provides an API conform the C programming lan-
guage, although the library itself is coded in C++. See Appendix B for a
complete description of the commands and data types in the SOLID APL
The commands of SOLID fall into four categories:

Shape definition and deformation Commands for defining and deform-
ing shapes relative to a local coordinate system.

Object creation and motion An object is an instance of a shape. Objects
are placed or moved by setting or changing the placement of its local
coordinate system.

Response definition Collision handling is defined by the client by means
of callback functions.
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Global controls This category includes commands for performing colli-
sion tests, for toggling options that control performance and storage
usage, and for tuning tolerances that determine the precision of cer-
tain algorithms. '

SOLID maintains a separate shape representation for collision detec-
tion. Shapes are referred to by pointers to the shape structures maintained
by SOLID. These pointers are used exclusively as shape references, thus
the client can not access these structures. The shapes are built using com-
mands similar to OpenGL. All commands and data types defined in the
SOLID API are prefixed with dt for commands, Dt for types, and DT__ for
constants. For instance, a pyramid may be built as follows.

DtShapeRef pyramid = dtNewComplexShape () ;

dtBegin (DT_SIMPLEX) ;
dtVertex (1.0, 0.0, 1.0);
dtVertex (1.0, 0.0, -1.0);
dtVertex(-1.0, 0.0, -1.0);
dtVertex (0.0, 1.27, 0.0);
dtEnd () ;

dtBegin (DT_SIMPLEX) ;
dtVertex (1.0, 0.0, 1.0);
dtVertex(-1.0, 0.0, 1.0);
dtVertex(-1.0, 0.0, -1.0);
dtVertex (0.0, 1.27, 0.0);
dtEnd () ;

dtEndComplexShape () ;

Here, the pyramid shape is composed of a pair of tetrahedra.

The shape types currently supported by SOLID include the primitive
shapes: Box, Sphere, Cone, and Cylinder, as used in VRML, as well as
complex shapes composed of polytopes. Here, a polytope is a simplex
(point, line segment, triangle, tetrahedron), a convex polygon, or a con-
vex polyhedron. No constraints concerning the topology of polytopes in
a complex shape are imposed. For instance, a set of polygons need not
define a closed surface. We refer to complex shapes defined in this way as
polytope soups, in accordance with the terminology used by Gottschalk
[46].
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Figure 6.1: A diagram of the SOLID framework. Ellipses denote data
structures, boxes denote API commands, and arrows denote data depen-
dencies.

An object is an instance of a shape defined relative to a local coordinate
system. A shape may be used to instantiate multiple objects. Note that
each object maintains a reference to a shape structure, rather than a copy
of the shape representation. In this way, we mimic VRML’s DEF/USE
mechanism. We refer to objects, using pointers to structures maintained
by the client, which are associated with the object. These object referen-
ces provide easy access to object related data maintained by the client for
collision handling. Figure 6.1 shows a diagram of the SOLID framework.

Again, we use commands similar to OpenGL for the placement of ob-
jects. However, contrary to OpenGL, we do not have to specify placements
for all objects in each frame, since SOLID maintains a representation of
each object’s placement. Only the placements of objects that are moved
with respect to the previous frame are specified.

A change of placement of an object is specified in the following way.
SOLID performs transformations only on the object referenced by a state
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variable representing the current object. The current object is by default
the object that is created last. For setting the current object to another
object we use the following command

dtSelectObject (void * object);

Here, object is an object reference. Any transformation that follows this
command is applied to the object referred to by object.

Objects are placed using translations, rotations, and nonuniform scal-
ings of their local coordinate systems. Each transformation is defined rel-
ative to the current placement of the local coordinate system, rather than
relative to the world coordinate system. However, we may specify a place-
ment relative to the world coordinate system, by first setting the local coor-
dinate system equal to the world coordinate system (loading the identity
transformation), and then applying the transformations. The following
sample code demonstrates how objects are created and placed relative to
the world coordinate system.

MyObject khufu;
MyObject khafre;

dtCreateObject (&khufu, pyramid) ;
dtCreateObject (&khafre, pyramid) ;

dtSelectObject (&khufu) ;
dtLoadIdentity () ;
dtTranslate(248.0, 0.0, 312.0);
dtScale(115.0, 115.0, 115.0);

Furthermore, contrary to OpenGL, rotations are specified using quater-
nions, rather than axis-angle descriptions. We will see more on quater-
nions in Section 6.3.

Collisions are handled by means of callback functions. A callback
function is a function that is part of the client, and is called by the library.
Response callbacks are functions of the type

void (*) (void *client_data,
' void *objectl,
void *object2,
const DtCollData *coll_data)

Here, client_data is a pointer to an arbitrary structure maintained by
the client, objectl and object2 are object references, pointing also to
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structures maintained by the client, and coll_data is the response data
computed by SOLID. For example, a client that counts the number of times
two given objects collide would use a callback similar to

void collide(void *client_data,
void *objectl,
void *object2,
const DtCollData *coll_data) {
(* (int *)client_data)++;
printf ("Object %d and %d collide\n",
(* (MyObject *)objectl).id,
(* (MyObject *)object2).id);
}

Here, client_data points to the counter that maintains the number of
collisions. .

Responses are defined per pair of objects, for all pairs containing a
given object, or as default for all object pairs. A response defined for a
pair of objects overrules a response defined for one of the objects in the
pair. A response defined for pairs containing a given object overrules the
default response. If for each of the objects in a pair a possibly different
response is defined, then one of the responses is arbitrarily chosen as the
response for the pair. In order to resolve this ambiguity, the client may
define the desired response for this pair. The mapping of object pairs to
responses is maintained in a structure called response table.

For example, suppose we want to write a game called Naval Warfare.
The game involves ships, of which some are minesweepers, mines, and
icebergs. The rules of this game are as follows:

1. If two ships collide then both ships sustain damage.

N

. If a ship hits a mine then the ship and the mine are both destroyed.
3. If a ship hits an iceberg then the ship sustains damage.
4. If a mine collides with an iceberg then the mine is destroyed.
5. If a minesweeper hits (detects) a mine, then the mine is destroyed.
We may implement these events using the foﬂowing responses:
1. Both objects sustain damage.

2. Both objects are destroyed.
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3. The object being the ship sustains damége.
4. The object being the mine'is destroyed.

As default response we choose Response 1, which implements Rule 1.
Rule 2 and 3 are implemented as object responses for respectively mines
and icebergs using Response 2 and 3. Response 4 is defined for all pairs
containing a mine and an iceberg, and thus overrules the previous two
responses. Also, Response 4 is defined for all pairs containing a mine-
sweeper and a mine. We see that with SOLID’s response handling mecha-
nism different responses can be applied to different object pairs in a simple
manner requiring little overhead.

Optionally, SOLID may perform a pre-sort selecting only the object
pairs whose bounding boxes overlap for further processing. For this pur-
pose, SOLID uses bounding boxes that are aligned to the world coordinate
system. Each time an object is moved, SOLID dynamically determines a
bounding box enclosing the object. For the pre-sort, SOLID applies our
adapted version of Baraff’s incremental sweep-and-prune algorithm, dis-
cussed in Chapter 5. Only the object pairs for which a response is defined
are selected. Also, when this option is enabled, SOLID will cache and
reuse data from previous intersection tests, such as separating axes, for
each selected pair of objects. Caching data may improve performance by
exploiting frame coherence.

Finally, the API provides a test command, which performs the colli-
sion tests. This command results in response callbacks being called for all
colliding pairs of objects, for which a response is defined. The command
returns the number of callbacks that are called. Depending on the type
of response data required, response data pertaining to the colliding object
pairs are computed, and passed to the callbacks as argument.

The algorithms for intersection testing and response data computation
are maintained in a table, such that for each pair of shape types, one in-
tersection test and some response data computation algorithms can be de-
fined. In the current SOLID, the choice of algorithms is fixed and can not
be altered at run-time by the client.

6.3 Design Decisions
In this section, we motivate the main design decisions concerning SOLID.

Here, we will have an inside look in the used algorithms and data struc-
tures. :
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6.3.1 Shape Representation

SOLID maintains separate shape representations for performing collision
detection, rather than using the shape representations maintained by the
client. This construction is chosen for a number of reasons:

e Shape representations used for interactive graphics generally do not
allow fast collision detection. Most graphics engines currently used
for interactive graphics render shapes represented by polygon soups.
These polygonal data are represented in a form that allows low-
bandwidth interfacing with, and fast processing by the graphics li-
brary, for instance as strips or fans of triangles [102]. Basically, all
geometric data is processed anew for each rendered frame. For col-
lision detection, only a small portion of the geometric data needs
to be processed for intersection testing in each frame. Spatial data
structures, as described in Chapter 5, are used to discard most of
the geometric data from intersection testing. Representing shapes as
triangle strips is less profitable, since only a few of the triangles in
a strip are likely to be inspected during intersection tests. Hence,
for collision detection, we opt for a shape representation consisting
of single components, maintained in an additional hierarchical data
structure, such as a bounding volume hierarchy.

e A design in which the collision detection library uses a shape rep-
resentation that is maintained by the client inevitably imposes con-
straints on the client’s choice of shape representation. For instance,
shapes for which the polygon vertices are computed and processed
on the fly, such as quadrics and sweep volumes, can not be used by
the collision detection library, since the set of polygons is not explic-
itly represented by the client.

e In order to keep the bandwidth of data exchange between the client
and the library low, which is especially desired in the application
of remote collision detection, the collision detection library should
maintain its own shape representation.

In multi-user environments simulated across a network, consistent be-
havior of the environment for all users is achieved by performing the sim-
ulations remotely on a single server. This server computes the new con-
figuration of the environment globally for all users. For this purpose, the
server performs collision handling. The configuration changes computed
by the server are sent to the individual users, where they are processed
in order to update the local environment configuration maintained by the
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Figure 6.2: Two environment simulation architectures.

user. Each user renders the updated environment locally according to its
own viewpoint, and returns the user interactions to the server. Figure 6.2
shows a networked and a monolithic environment simulation architec-
ture. Obviously, in multi-user applications, using separate shape repre-
sentations for collision detection and rendering is a necessity rather than
an option.

In single-user applications, however, maintaining two sets of geomet-
ric data seems rather wasteful. Notably, for polygonal shapes, vertex data
takes up the lion’s share of the storage used by shape representations, and
should desirably not be duplicated. Moreover, shape deformations, which
are specified by vertex displacements, result in a performance penalty, in
the form of additional vertex copying. Hence, in these cases, a single ver-
tex representation might be more appropriate.

In order to cope with the conflicting demands regarding shape rep-
resentations for rendering and collision detection, and still keep the ver-
tex data maintained at a single storage location, we provide the following
storage method. We borrow a data structure used in OpenGL Version 1.1,
called vertex array. A vertex array, as the name suggests, is a contigu-
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Figure 6.3: Vertex arrays are maintained by the client. SOLID may directly
access data maintained in vertex arrays. API commands are used to pass
or change the memory location of a vertex array to the shape representa-
tion used by the library. In remote collision detection (dashed line), copies
of vertex arrays are maintained by the collision detection server.

ous block of vertex data in which each vertex can be randomly accessed

using an index. Instead of storing the actual vertices in each of the sep-

arate shape representations, we use array indices to refer to the vertices

in the array. Since an integer uses less storage than a 3D vertex (4 vs. 24

bytes, using 32 bit integers for indices, and 64 bit floating-point numbers

for scalars), sharing vertex data saves a considerable amount of storage.
Figure 6.3 illustrates the use of vertex arrays.

Moreover, vertex arrays allow easy interfacing of shape deformations,
without the need for copying vertex data. Shape deformations may be
specified in two ways: (a) the vertex data in the array of the shape are
explicitly changed, after which SOLID is notified of the change, or (b) the
current vertex array of the shape is replaced by a vertex array at a different
address, i.e., in a different block of memory. Using the latter method, a
sequence of key frames of a shape at different stages in the deformation
can be stored in memory, and alternated by the client.

The use of vertex arrays conflicts with the requirement that the library
should not impose constraints on the shape representation used by the
client, and the requirement that the data exchange between the client and
the collision detection library should be kept minimal in order to allow
efficient collision detection by a remote server. Regarding the first re-
quirement, we note that, although current SOLID imposes rather strict
constraints on the arrangement of vertex data in arrays, flexible derefer-
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encing methods, for instance as used in OpenGL 1.1 [102], give the client
quite a lot of freedom in arranging the vertex data in arrays. Regarding
the second requirement, we conclude that for remote collision detection,
copying of vertex data is inevitable. However, maintaining vertex data
in arrays is still useful, since arrays allow fast exchange of vertex data in
blocks of memory.

For fast intersection testing of complex shapes, such as polygon soups,
SOLID computes and maintains a bounding volume hierarchy, as dis-
cussed in Chapter 5. Although OBB trees have been shown to be faster
than AABB trees, we choose to use the latter tree type for the following
reasons:

e An AABB tree requires less storage than an OBB tree for the same
model. A node in an AABB tree uses 56 bytes (6 scalars + 2 pointers),
whereas an OBB tree node uses 128 bytes (15 scalars + 2 pointers).
Since for both tree types a tree representation of n primitives has
2n — 1 nodes, we find that an AABB tree uses asymptotically 112
bytes per primitive, and an OBB tree uses 256 bytes per primitive,
excluding the storage taken by the primitives. Considering that for
triangle meshes, the per-triangle storage requirements are roughly 40
bytes (vertex data is shared among the triangles in a mesh), we see
that the storage used by the tree structures takes up the larger part of
the shape representations’ storage usage. Hence, for complex models
composed of over a 100,000 primitives, the excessive storage usage
of the OBB tree might turn out to be a problem. In these cases, the
AABB tree, which has a more moderate storage usage, is preferred.

 More critically, OBB trees are not easily adapted to shape deforma-
tions. OBB trees need to be rebuilt whenever the shape it represents
deforms. AABB trees, on the other hand, can quite easily be adapted
to deformations, as discussed in Chapter 5. Refitting an AABB tree
is roughly 30 times faster than rebuilding an OBB tree.

Since for intersection testing, AABB trees are not much slower than OBB
trees, even for highly concave models at close proximity, we found the
AABB tree to be the preferred spatial data structure for complex shapes.
Moreover, AABB trees can be built faster than OBB trees, although this
feature is not crucial since a bounding volume tree is constructed once in
the preprocessing stage. The construction of an AABB tree is performed
automatically by SOLID, and does not require instructions by the client.
Experiments with different tree building heuristics have shown that the
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trees constructed by SOLID are generally close to optimal, hence we con-
sider it unlikely that any hints given by the client on how to perform the
model partitioning will result in a significantly faster tree.

6.3.2 Motion Specification

Except for shape deformations, all motions are specified by changing the
local coordinate systems of the moving objects. Most commonly used
are rigid motions, which are composed of translations and rotations. We
translate an object by changing the position of the local origin and rotate
an object by changing the orientation of the local basis relative to the world
coordinate system. Translations are specified using vectors; rotations are
specified using quaternions.

A quaternion is a four-dimensional vector. The set of quaternions of
length one (points on the 4D unit sphere) map to the set of orientations
in three-dimensional space. That is, there is a one-on-one relation between
points on a 4D unit hemisphere and orientations in 3D space, since a given
quaternion and its negate represent the same orientation.

Quaternions have some benefits over axis-angle orientation representa-
tions as used in popular graphics libraries [102]. Most notably, they allow
cheap and simple linear interpolations between two orientations [85]. Fur-
thermore, for computing an orthonormal basis whose orientation is given
by an axis-angle tuple, we need to evaluate the sine and cosine of the an-
gle, whereas computing a basis given by a quaternion requires only primi-
tive arithmetic operations. Of course, transforming an axis-angle tuple to
a quaternion involves sine and cosine evaluations.

However, we prefer quaternions for the following reason. The sin
and cos functions included in the standard C library are computationally
quite expensive. Quick and dirty sine/cosine evaluations using lookup
tables is faster and may yield reasonable results for most applications. Be-
cause enforcing a specific sine/cosine routine deteriorates the versatility,
we opt for quaternions instead of axis-angle tuples, since with quaternions
calls to sine and cosine routines can be avoided in our library.

Besides rigid motions, we also support nonuniform scalings on local
coordinate systems. Nonuniform scalings allow a single shape to be in-
stantiated multiple times, with each instance having different dimensions.
Moreover, nonuniform scalings can be used to prevent missing collisions
due to sparsely sampled motion for objects that move at high velocities.
By scaling a fast moving object with respect to its velocity vector, we can
make sure that consecutive configurations of the object overlap, as dis-
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cussed in Chapter 2.

We apply a specification method of object placements that differs quite
a lot from the one used in OpenGL. OpenGL uses a stack of transforma-
tion matrices of which the top matrix represents the current local coordi-
nate system. Matrix stacks are convenient for processing transformation
hierarchies. Moreover, OpenGL does not exploit frame coherence, i.e., all
objects are processed anew for each frame. We do not consider the use of
display lists exploitation of frame coherence, since the use of display lists
only saves command calls. It does not reduce the amount of processing.
In common usage of matrix stacks, the matrices representing the object
placements are created and destroyed in each frame.

For collision detection, however, exploiting frame coherence is crucial
in order to attain good performance. Hence, we choose a method for spec-
ifying object placements that is persistent in-between frames. Only the
object placements that have changed relative to the previous frame, are
specified in each frame. The static objects keep their placements from the
previous frame.

SOLID does not provide a mechanism for handling transformation hi-
erarchies, such as OpenGL’s matrix stacks. However, the transformations
computed by OpenGL can be used to specify object placements in SOLID.
In OpenGL, affine transformations are represented by 4 x 4 matrices. The
top matrix of the matrix stack in OpenGL can be loaded into an array of 16
scalars and passed to SOLID, which places the current object according to
this matrix. In this way, SOLID benefits from the computations performed
on OpenGL's matrix stack. Moreover, consistency between the configur-
ation of objects used by OpenGL, and the configuration maintained by
SOLID is established quite easily, since both libraries use identical object
placements.

6.3.3 Response Handling

Callbacks provide an elegant mechanism for handling response. A call-
back is a function that handles a specific event, which is the collision of a
pair of objects in our case. They are defined by the client, but are not called
directly by the client. Instead, a callback is called by the library, whenever
a collision is detected for a pair of objects, whose response is handled by
the callback. In event-driven systems, such as graphical user interfaces,
the use of callbacks for handling all sorts of events is quite common. The
idea of using callbacks for response handling in collision detection has
been proposed earlier by Zachmann [104]. '
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Some response types require additional data pertaining to the configur-
ation of the intersecting objects. These response data are computed by the
library and are passed as argument to the callback functions. Currently,
SOLID supports two response data types. The first type is a point com-
mon to both objects. A common point is useful when the exact spot where
an object hits another object has to be known. In our Naval Warfare game,
we might want to use this, if the amount of damage a ship sustains de-
pends on the location on its hull, where the ship is hit.

A goal in the design was to provide a response data which can be
used for computing reaction forces in order to resolve collisions in physics-
based simulations. For this purpose, we need to have an approximation of
a points and a contact plane of a pair of colliding objects. In Chapter 2 we
saw that these data are best approximated using the frame prior to the col-
lision. The closest points for this frame are taken to be the contact points,
and the vector difference of the closest points is a good approximation of
the contact plane’s normal. ”

As described in Chapter 4, the preferred method for obtaining the
closest points is to back-up to the previous frame on detecting a colli-
sion, rather than computing and maintaining the closest points for each
simulated frame. Consequently, the library must maintain at all times a
representation of the previous frame. A frame is represented by the place-
ments of the local coordinate systems as well as the local coordinates of
the vertices of the complex shapes. For the local coordinate systems, we
simply cache the last placement for the next frame.

For deformable shapes, we propose a double-buffering technique.
The local vertex coordinates of a shape for two consecutive frames are
stored in two vertex arrays. One array contains the vertex coordinates of
the current frame, and the other contains the previous vertex coordinates.
In each new frame, the two arrays are swapped, and the new coordinates
are stored in the current array. The swapping of arrays is simply done
by pointer assignments, hence there is no significant performance loss in
applying this technique.

Note that the handling of vertex arrays for double buffering is done by
the client. SOLID merely provides a command for changing the pointer to
the current vertex array of a complex shape. In each frame, we only cache
for each complex shape, the pointer to the current vertex array. It is the
responsibility of the client to cache the vertex arrays.

Since it is often necessary to perform multiple collision tests per frame,
for instance, for resolving secondary collisions, i.e., collision that result
from configuration changes computed by the collision handler, the library
needs to be explicitly notified that the simulation proceeds to the next
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frame. On receiving this notification, SOLID caches the configuration of
the objects in the current frame. This configuration is described by the
placements of local coordinate system and vertex arrays. Whenever a
closest point pair of a pair of objects needs to be computed, the library
restores the configurations of these objects from the previous frame, and
performs the closest-point-pair computation.

Note that in order to yield a nonzero plane normal for the contact
plane, it is necessary that the objects were not intersecting in the previ-
ous frame. Hence, the simulation should never proceed to another frame,
if object pairs, for which contact data needs to be computed, are colliding
in the current frame. It is the responsibility of the client to guard this con-
dition. For simulations that do not require the use of contact data for any
object pair, we do not need to cache previous configurations. Hence, in
this case, the client does not need to notify SOLID of a frame change.

6.3.4 Algorithms

When caching is enabled, SOLID maintains a list of object pairs whose
bounding boxes overlap. This list is incrementally updated each time
an object is moved, using our enhanced version of Baraff’s incremental
sweep-and-prune algorithm, as described in Chapter 5. The update time
per moved object for this algorithm is worst-case O(nlogk), for n objects
and a list of k object pairs represented by a balanced binary search tree.
However, when frame coherence is high, the update time per moved ob-
ject is expected to be almost constant.

The bounding boxes used in the incremental sweep-and-prune algo-
rithm are aligned to the world coordinate system. An object’s bounding
box is recomputed each time the object is moved. The alternative choice of
maintaining bounding boxes that have fixed dimensions, is not possible,
since objects may also be scaled and deformed. For rigid objects, we could
maintain a fixed-size bounding box, large enough to enclose the object in
any orientation, however, in SOLID, no distinction is made between rigid
and non-rigid objects.

The bounding boxes of objects represented by primitive convex shapes,
such as spheres or cones, can be straightforwardly computed. How-
ever, for complex shapes composed of thousands of primitives, comput-
ing the smallest enclosing box is computationally expensive. Thus, for
these shapes we opt for a fast but sloppy solution. Recall that for complex
shapes we maintain an AABB tree, which is aligned to the shape’s local co-
ordinate system. We take as bounding box of an object that is represented
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Figure 6.4: Although it is usually larger in size, we use the world-axes
aligned bounding box of the AABB tree’s root box rather than the small-
est world-axes aligned bounding box of a complex shape, since it can be
computed much faster.

by a complex shape, the smallest world-axes aligned box that encloses the
root box of the AABB tree of the shape. Figure 6.4 illustrates this bounding
box computation. As shown in Chapter 5, computing a bounding box of
an oriented box takes only 24 arithmetic operations.

The list of object pairs with overlapping bounding boxes is processed
each time the test command is issued. When caching is disabled, all pairs
of objects for which a response is defined are further processed. Processing
an object pair involves testing whether the objects intersect, and if so, com-
puting the specified response data. The intersection testing algorithms,
and algorithms for response data computation depend on the shape types
of the objects in the pair. For instance, testing a sphere for intersection with
a polygon soup, requires a different algorithm than testing a sphere and a
cone.

If a the choice of algorithm depends on the dynamic type of only one
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of its parameters, we implement the algorithm as a virtual method in C++.
However, in our case the algorithms depend on the dynamic type of two
data types. This kind of dependency is commonly referred to as double
dispatch in the object-oriented programming community [65]. Since C++
does not offer a straightforward double-dispatch construction, we chose
to apply algorithm tables for implementing double dispatch.

An algorithm table is a mapping of pairs of shape types to algorithms
defined by C functions. For instance, let the type of the C functions that
implement the intersection testing algorithms be given by

bool (*) (const Shape&, const Shapes&,
const Transform&, const Transformé&) ;

Here, Shape is the base type of all shape types. Suppose we have the
following C implementation for testing the intersection of a convex and a
complex shape.

bool intersect (const Convex&, const Complex&,
const Transform&, const Transform&) ;

Then, the function returned by the algorithm table for the pair of shape
types (Convex, Complex) is the function given by

bool intersectConvexComplex (const Shape& shapel,
const Shape& shape2,
const Transform& xforml,
const Transform& xform2)

return intersect((const Convex&)shapel,
(const Complex&)shape2,
xforml, xform2);

}

Note that we may safely cast objects of the base class Shape to the derived
classes Convex and Complex, since the types of the objects are checked
by the algorithm table.

The dynamic type of an object, i.e., the type of the object at the time of
creation, can be retrieved at run time using the C++ run-time type identi-
fication (RTTI) mechanism [91]. However, since the RTTI mechanism was
not supported by most compilers at the time we developed SOLID, we
chose to give each shape a tag field which is used to identify the shape’s
dynamic type.
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Figure 6.5: An OMT diagram of the class hierarchy of shape types used in
SOLID.

In selecting the proper algorithms, SOLID currently discerns two basic
shape types, convex shapes and complex shapes. However, the number of
basic shape types can easily be increased if necessary for future extensions.
New shape types can be added by inserting new entries in the algorithm
table. For each pair of shape types that contains the new shape type, we
add an intersection testing and, for all response data types, a response data
computation algorithm to the algorithm table.

The class of convex shapes is specified into classes for spheres, boxes,
cones, cylinders, and polytopes. The class of polytopes again is further
specified into simplices, convex polygons, and convex polyhedra. Com-
plex shapes are representations of polytope soups. A complex shape main-
tains an AABB tree of the set of polytopes. Figure 6.5 shows a diagram of
the hierarchy of shape classes used in SOLID.

We test pairs of convex shapes using ISA-GJK, our GJK-based incre-
mental separating-axis computation algorithm discussed in Chapter 4.
The common point response data type is also computed using ISA-GJK.
The closest points from a previous frame are computed using our im-
proved implementation of the GJK distance algorithm.

Two complex shapes are tested for intersection using the AABB tree
intersection test described in Chapter 5. Currently, we use ISA-GJK also
for testing pairs of polytopes. For some polytope types, such as triangles,
using a dedicated intersection test might be faster. However, polytope
intersection tests take only a small portion of the time used for testing a
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pair of AABB trees, as we saw in Chapter 5. Hence, the loss of performance
is not dramatic when a general approach is taken. The response data for a
pair of intersecting complex shapes is the response data computed for the
first pair of polytopes that is found intersecting. Currently, SOLID does
not process multi-contact collisions.

Finally, for testing a convex shape and a complex shape we apply the
following technique. First, we compute a bounding box of the convex
shape aligned to the local coordinate system of the complex shape. Over-
lap tests on aligned bounding boxes are cheap (9 operations), thus, an
AABB tree can be quickly traversed depth-first, using the convex shape’s
bounding box as query volume. On arriving at a leaf node, the polytope
maintained in the leaf is tested for intersection with the convex shape and
the result is returned. Again, we use GJK based algorithms for primitive
intersection testing and response data computation. A

When caching is enabled, SOLID caches a separating axis for each dis-
joint object pair in the list of object pairs updated by the sweep-and-prune
algorithm. This axis is used for initializing the ISA-GJK algorithm. In
intersection testing on complex shapes, multiple primitive pairs may be
tested. Here, a primitive intersection test that is performed after another
primitive test uses the separating axis found by this earlier primitive test
as initial axis. If none of the primitive intersection tests results in an in-
tersection, the last found separating axis is cached. In this way, coherence
between the placements of consecutively tested primitives in a complex
shape is exploited.

6.4 Evaluation

In this section we discuss the goals that are attained for SOLID. We also
discuss some restrictions that may be removed in future versions.

One major goal was to provide collision detection for all shapes and
motions that may be specified using VRML. We achieved compliance with
VRML, by incorporating the following features:

e Models can be built using boxes, cones, cylinders, spheres, and com-
plexes of points, line segments and convex polygons.

e Shapes can be instantiated multiple times. This feature captures
VRML'’s DEF/USE mechanism.

e Object placement and motion is specified using translations, rota-
tions, and nonuniform scalings of the object’s local coordinate sys-
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tems.
e Complex shapes can be deformed.

Note that we did not achieve full compliance, since VRML allows poly-
gons to be non-convex. However, this poses hardly a problem, since the
bulk of polygonal models that are currently used in interactive 3D graph-
ics, are composed of convex polygons (mostly triangles). Moreover, code
for decomposing a concave polygon in to convex components (triangula-
tion) can easily be obtained [72].

SOLID supports a little more than just the VRML set of primitives,
since with SOLID we can specify a shape using convex polyhedra as primi-
tives. So, instead of using the actual shape, we may use the convex hull of
a complex shape as a representation for collision detection, when accuracy
is less critical. A convex hull representation is sometimes preferable, since
- it uses far less storage, and results generally in better performance.

Another goal was to incorporate a response data that could be used for
physics-based simulations. SOLID is capable of computing an approxima-
tion of the contact data, although with some restrictions:

e The client has the responsibility to resolve all collisions in each
frame, i.e., the simulation should not proceed to another frame be-
fore all object pairs for which contact data is computed are disjoint.
Otherwise, SOLID can not compute the normal to the contact plane
in the next frames.

e SOLID does not handle multi-contact collisions. If a pair of colliding
objects has multiple points of contact, then contact data is computed
for only one of the contact points.

Notably, the latter restriction may turn out to be a problem for physics-
based collision handlers. Fixing this problem should not pose too many
problems, since it merely involves computing the contact data based on
all intersecting pairs of primitives of a pair of complex shapes, rather than
only on the first intersecting pair of primitives that is found.

Finally, let us examine how well we did with respect to the four quality
aspects: performance, accuracy, storage usage, and versatility.

e Performance was our major concern. On our test platform, a Sun
UltraSPARC-I (167MHz), testing a pair of complex shapes composed
of a few thousands of primitives takes roughly one millisecond.
When caching is enabled, exact intersection tests are performed only
for object pairs for which the bounding boxes overlap. The cost



130 CHAPTER 6. DESIGN OF SOLID

of updating the list of object pairs that have overlapping bounding
boxes is negligible if frame coherence is high. Suppose that in a real-
life setting, the exact intersection test needs to be performed for, say,
10 object pairs per frame. Then, the total time necessary for detecting
all collisions would be approximately one hundredth of a second,
which is fast enough for interactive applications.

e With respect to the issue of accuracy, we conclude that SOLID
performs exact intersection tests and response data computations,
within the precision bounds of the used floating-point number rep-
resentation.

e The amount of storage used by SOLID is quite large, typically in the
order of 150 bytes per primitive. Although, this amount is consider-

- ably smaller than the amount used by comparable collision detection
libraries.

e With respect to versatility, the library imposes few constraints upon
the client. All shape and object data is maintained by the library, ex-
cept for the shape references, which are used for instantiating objects,
and the vertex arrays that are used for specifying deformations.

6.5 SOLID Version 1.0

Until now, we have discussed the second version of SOLID that evolved
during our research on collision detection methods. The first version of
SOLID is in functionality almost a subset of SOLID version 2.0. In this
section, we will discuss the main differences, in particular the features that
did not make it into the second version.

The first SOLID supports complex shapes composed of polygons
(polygon soups) only. Shapes are built using non-convex polygons, and
are rigid, i.e., shapes can not be deformed. SOLID 1.0 does not support the
use of vertex arrays for defining shapes. Furthermore, SOLID 1.0 allows
only rigid motions of objects, thus scaling of an object’s local coordinate
system is not possible.

In the first version, we use a polygon-polygon intersection test that
involves sorting the intersection points along the line of intersection, as
discussed in Chapter 3. We sort the points using Quicksort rather than
Jordan sorting, since for short point sequences, Quicksort is likely to be
faster than Jordan sorting. Moreover, Quicksort implementations are read-
ily available, for instance in the Standard Template Library [70].
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In SOLID 2.0, concave polygons may no longer be used as modeling
primitives. The reason for this design decision is the following. For test-
ing the intersection of a convex polygon and another convex primitive
shape, we can use the ISA-GJK algorithm, as shown in Chapter 4. How-
ever, intersection tests between concave polygons and primitive shapes
require the use of dedicated algorithms, which are based on the strategy
for polygon-volume intersection testing described in Chapter 3. For the
sake of simplicity, we decided not to include for each shape type, a dedi-
cated polygon-shape intersection testing algorithm. Instead, we imposed
the restriction that polygons have to be convex.

SOLID 1.0 supports as response data, the actual intersection of a pair
of objects. Since only polygon soups are used as shapes in SOLID 1.0,
the intersection of a pair of objects is a collection of line segments. These
line segments are the segments of intersection of the intersecting pairs of
polygons. Intersections of coplanar polygons are for convenience’s sake
ignored. We compute the intersection of two polygons using the algorithm
described in Chapter 3, which is an extension of the algorithm used for
testing the intersection of polygons.

Initially, it was our intention to approximate a contact point and a con-
tact plane for a pair of colliding objects by applying multivariate analysis
on the set of endpoints of these intersection line segments. However, for
reasons discussed in Chapter 2 such an approach might fail badly in some
cases. Hence, this response data type was dropped in the second version
of SOLID.

Finally, in SOLID 1.0, the client may choose between fixed-size boxes
and dynamically computed boxes in the sweep-and-prune algorithm. The
fixes size boxes are computed once and are large enough to enclose each
object in all orientations, whereas the dynamically computed boxes are re-
computed each time an object is rotated. Depending on the density of the
objects in the scene, either one of these options may result in better perfor-
mance. We dropped the fixed-size box option, for the obvious reason that
for non-rigid objects, a fixed-size box can not be computed a priori, such
that the object is enclosed by the box under all possible transformations
and deformations.

Opverall, version 2.0 of SOLID is more powerful than version 1.0. How-
ever, for applications in which only rigid polygonal objects are used, we
might prefer SOLID version 1.0 for the following reasons:

e SOLID 1.0 supports the use of non-convex polygons. When polygo-
nal models contain concave polygons, the use of SOLID 1.0 is more
convenient.
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- o SOLID 1.0 computes the intersection of a pair of colliding objects as
response data. For some applications, such as CAD and scientific
visualization, this response data type may be quite useful.

e SOLID 1.0 may in some occasions be faster than SOLID 2.0. For in-
stance, if the density of objects is low, we can use fixed-size AABBs,
instead of dynamically computed AABBs for the sweep-and-prune
algorithm. Also, if frame coherence is low, the polygon-polygon in-
tersection test used in SOLID 1.0 is faster than ISA-GJK, as used by
SOLID 2.0.

6.6 Implementation Notes

 This section is a collection of implementation details concerning the fun-
damental data structures used in SOLID. Here, we take the opportunity to
evangelize on generic programming and the Standard Template Library
(STL) [70].

6.6.1 Generic Data Types

Most of SOLID’s container data types are implemented using template
container classes from the STL. For instance, the set of objects is main-
tained in an STL map, using the object reference as search key. The list of
object pairs, which is maintained when caching is enabled, is implemented
as an STL set. Sets and maps are implemented as balanced binary search
trees (red-black trees) in STL, and thus allow O(logn) access and update
time for a collection of »n elements.

The standard template container classes have proven to be very use-
ful for implementing SOLID’s container data structures. The benefit of
using standard template classes over hand-coded classes is the fact that the
classes are readily available without requiring effort from the programmer
to code and test the classes. Also, since all the STL container classes have
similar interfaces, changing from one type of container to another is easy.

The use of STL template classes introduces hardly any performance
penalty. Most template classes result in code that is as fast as the equiv-
alent hand-coded classes. Moreover, when used properly, STL classes do
not require significantly more storage than hand-coded classes would use.
However, there are some drawbacks to the use of template classes, al-
though they are quite insignificant.
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Since all code in a template class is inlined, each time a template class is
instantiated for a given type, executable code is generated by the compiler
for all the used inlined code. Hence, the size of the executable code is
likely to be larger when template classes are used than when the classes are
hand-coded. For SOLID, we managed to keep the total size of the library’s
executable code close to a modest 200 kilobytes, hence code size wasn't
a problem. Less critically, because of the large quantity of inlined code,
template classes take longer and require more memory to compile. For
the development of SOLID, these drawbacks did not pose any problems.

Furthermore, since STL uses rather advanced template constructions,
C++ compilers from a number of vendors currently fail to compile some
of the STL classes. With the adoption of the STL in the ISO C++ standard
[91], this problem is expected to be solved in the near future.

Besides container classes, the STL also offers a number of template al-
gorithms and functions, such as sort, copy, and search routines. We found
the performance of these algorithms to be as good as hand-coded, and
better than the standard C library functions. In particular, sorting using
the STL sort is significantly faster than using gsort from the standard C
library.

6.6.2 Fundamental 3D Classes

The fundamental linear algebra classes for representing 3D vectors, points,
quaternions, and 3 x 3 matrices, that were used in SOLID, were developed
from scratch. It would be desirable to use existing linear algebra classes
for these data types, since implementation of these classes requires consid-
erable effort, and affects the performance of the library to a large extent.
However, at the time we started to develop SOLID, no usable C++ linear
algebra classes were freely available.

Similar to the STL, our 3D linear algebra classes have all their code in-
lined. We chose to use inline methods, since they allow better performance
than explicitly called functions. Since these methods usually require only
a few statements, the increase in executable code that result from using
inline methods is insignificant. A number of operations such as vector ad-
dition, scalar multiplication, and matrix operations, are denoted by over-
loaded operators such as + and *=. Overloading of elementary operations
for algebraic types greatly enhances the readability of the code.

In SOLID, an affine transformation is represented by a tuple contain-
ing a row-major 3 x 3 matrix as linear component and a vector as transla-
tional component. Affine transformations represent local coordinate sys-



134 CHAPTER 6. DESIGN OF SOLID

tems; the columns of the matrix represent the basis axes and the vector
represents the position of the origin relative to a reference coordinate sys-
tem. We did not decide for a column-major 4 x 4 matrix representation as
used in OpenGL, since we found a row-major 3 x 3 matrix representation
to be more convenient for certain operations. Moreover, manipulations
on 4 x 4 matrices require more computations, for instance, in vector and
matrix multiplications.

The transform class contains a method for mapping points from local to
reference coordinates. In order to give a transform object the appearance
of a function, we chose to implement this method as a function operator.
This function operator may be implemented in the following way:

Transform: :operator () (const Pointé& p) const {
return basis * p + origin;

}

and may be used as follows,
Point world = xform(local);

where xformis a transform object, and local a point given in local coor-
dinates with respect to xform.

Also, using the function operator in this way allows easy application of
STL algorithms. For instance, we map an array local_array of n points
in local coordinates to an array world_array in world coordinates in the
following way, using STL’s transform algorithm :

transform(&local_array([0], &local_array[n],
&world_array[0], xform);

These type of constructions are easy to program, easy to read, and result
in fast code. ‘

As a conclusion, we present some recommendations for developing
code in C++:

e Exploit the STL as much as possible. STL offers container classes and
algorithms that result in performance that is, in general, as good as
hand-coding.

e Operator overloading for fundamental types is useful, since it im-
proves the readability of the code, and allows easy interfacing with
STL algorithms.
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e Short functions are best inlined, since the overhead involved with
explicit function calls deteriorates performance. However, don’t
overdo inlining. If the overhead of a function call is small in compar-
ison with the operations performed by the function, inlining yields
little performance gain, and increases the size of the executable code
if the function is used at multiple places in the code.
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Chapter 7

Conclusion

“A movement is accomplished in six stages, and the seventh brings return.”
Syd Barrett

In this final chapter we summarize the results of our research, and present
some pointers to interesting topics for future work.

7.1 Contributions

Our research in collision detection methods was mostly motivated by the
development of SOLID, and has a strong emphasis on practical issues.
However, we also contributed work that may have some theoretical inter-
est.

We found new time bounds for both the problem of detecting and
of computing the intersection of a pair of three-dimensional non-convex
polygons that lie in non-parallel planes In Chapter 3 we presented algo-
rithms for these problems that run in time linear in the number vertices of
the polygons.

7.1.1 Algorithms for Convex Objects

Our main work involves research on algorithms for detecting intersections
between convex objects. We examined in detail the Chung-Wang (CW) al-
gorithm [20] and the Gilbert-Johnson-Keerthi (GJK) algorithm [40]. The
CW algorithm incrementally computes a separating axis for a pair of dis-
joint polytopes, whereas the GJK algorithm is used for computing the dis-
tance between a pair of convex objects.
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The two algorithms perform the computations in a similar way. They
are both iterative methods that approximate the required solutions. In
each iteration, both algorithms find a better approximation using a pair
of support points of the objects. However, despite their similarities, the
algorithms perform quite differently.

The major benefit of the CW algorithm is the fact that it is incremen-
tal, i.e., if the algorithm is initialized by an axis that is close to being a
separating axis, then the algorithm needs much fewer iterations to find a
proper separating axis than if started from scratch. This is useful in com-
puter animation, where there is usually a lot of frame coherence. By using
the separating axis found in a previous frame for computation of a separ-
ating axis in the current frame, we may speed-up the collision detection
considerably.

However, the CW algorithm also suffers from some drawbacks. In the
CW algorithm, each iteration takes time linear in the number of preced-
ing iterations. This should not be a problem if we could keep the number
of iterations small. However, we showed in Chapter 4 that for CW, con-
vergence can be extremely slow, and thus the algorithm may require a
large number of iterations. Furthermore, due to this slow convergence,
or rather, lack of convergence, generalization of CW to a larger class of
convex objects, including, for instance, convex quadrics, is not straight-
forward. Although the CW algorithm seemed very promising at first, we
were unable to overcome these problems, and thus, shifted our attention
to the GJK algorithm.

The GJK algorithm takes only a constant time per iteration (if we dis-
count the time for computing the support points). Moreover, GJK con-
verges faster, and thus, requires fewer iterations than CW. Also, GJK is
applicable to general convex objects [39]. However, for the original GJK,
the computation time per iteration is quite large, in particular, much larger
than the time taken by one of the first few iterations of the CW algorithm.
Furthermore, the original GJK is not incremental, and hence, does not ex-
ploit frame coherence. Finally, GJK may suffer from termination problems
due to rounding errors in floating-point arithmetics for pairs of polyhedra
that differ a lot in size.

In this thesis, we addressed the problems concerning GJK, and pre-
sented enhancements of the algorithm. We improved the performance of
GJK, by caching computed values in-between iterations, thus significantly
reducing the number of computations per iteration. We showed that by
modifying the algorithm such that it returns a separating axis, rather than
the distance, the number of iterations can be greatly reduced. Moreover,
we showed that this modified GJK can be used for incremental separating
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axis computation. We solved GJK’s termination problems by extending
the algorithm such that it detects numerical problems. Experiments have
shown that, our improved GJK algorithm, referred to as ISA-GJK, has a
performance that is close to CW'’s, and is significantly faster than the Lin-
Canny incremental distance algorithm [61].

7.1.2 Spatial Data Structures

Most collision detection methods described in literature are aimed at re-
ducing the cost of intersection tests for complex models composed of a
large number of objects. We discern two types of problems: (a) finding
all intersecting pairs of objects among freely moving objects, and (b) find-
ing all intersecting pairs of primitives of two complex shapes composed of
thousands of primitives.

For the first problem, we presented an improvement of Baraff’s incre-
mental sweep-and-prune scheme [4]. This scheme involves maintaining a
list of pairs of objects whose world-axes aligned bounding volumes over-
lap. The improvement concerns the update time in cases where only a few
of the objects are moving at a given time. When frame coherence is high,
Baraff’s scheme allows updating the list of object pairs in roughly linear
time with respect to the total number of objects, whereas with our scheme,
an update is performed in time linear in the number of moving objects only.

For the second problem, we examined two data structures: the oriented
bounding box (OBB) tree, and the axis-aligned bounding box (AABB) tree.
Both data structures are bounding volume hierarchies, and are constructed
by recursively bipartitioning a set of primitives in two geometrically co-
herent subsets, and computing bounding volumes for the sets. For testing
the intersection between two complex shapes undergoing rigid motion,
the OBB tree yields, in general, the best performance of the two data struc-
tures. However, the differences in performance are not extreme. We pre-
sented an intersection test for a pair of AABB trees that takes, despite the
looser fit of the AABBs, only about 50% more time on average than the
best implementation for OBB trees, currently available. Furthermore, an
AABB tree takes roughly half as much storage as an OBB tree, and takes
less time to construct.

Yet, the most significant benefit of AABB trees over OBB trees concerns
shape deformations. In Chapter 5 we presented a fast method for updating
an AABB tree after a shape deformation. Updating an OBB tree after a
shape deformation is more complex, and involves reconstructing the tree
for the deformed shape. Hence, we found the AABB tree, as presented
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in this thesis to be the data structure of choice for intersection testing of
complex deformable shapes.

7.1.3 Collision Detection Library

Our research on collision detection methods was aimed at designing a li-
brary for collision detection in interactive 3D computer animation. This
work resulted in a library, called SOLID, which is an acronym for Soft-
ware Library for Interference Detection. SOLID incorporates the following
innovative features:

e SOLID supports models composed of a mix of shape types, inclu-
ding VRML'’s primitive shapes and complex shapes composed of
convex polygons and convex polyhedra.

e SOLID supports deformations of complex shapes.

e SOLID allows besides translations and rotations, also nonuniform
scalings on objects. This feature is useful for instantiating multiple
objects of different dimensions using a single shape.

e SOLID optionally computes response data that represent the approx-
imated contact points and contact plane of a pair of colliding objects.
This response data type is useful in physics-based simulations.

SOLID is written in standard C++, however, the library has an API
of standard C functions, and can thus be used in both C and C++ ap-
plications. The complete source code as well as the documentation for
SOLID is freely distributed under the terms of the GNU Library General
Public License [35]. Thus far, interest in using SOLID has been shown
for wide variety of application areas, including 3D games, haptic inter-
faces, CAD/CAM, flight and underwater simulators, rapid prototyping,
and motion planning.

7.2 Future Work

As in any line of scientific research, the work on collision detection is never
done. In this section, we discuss a number of interesting research topics
that may be addressed in future work.
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7.2.1 Shape Types

Currently, polyhedra are represented using boundary representations con-
sisting of a collection of polygons. For some polyhedra, a representation
described by the union of as a set of convex polyhedra may result in better
performance and require less storage. Methods for decomposing a con-
cave polyhedron into a minimum number of (possibly overlapping) con-
vex components are still a subject of research.

Implicit surfaces, parametric surfaces (NURBs, Bézier patches), and
constructive solid geometry (CSG), are popular shape representations in
geometric modeling. Since rendering of these shape representations at in-
teractive rates is not yet feasible, the shapes are usually represented as
polyhedral shapes which can be rendered interactively on current graphics
hardware. However, for the purpose of collision detection, implicit sur-
faces, parametric surfaces, and CSG representations might be more suit-
able than polygon soups. Further research is necessary in order to decide
which type of shape representation is best for collision detection.

7.2.2 Algorithms

Both the CW algorithm and the GJK algorithm require the computation of
support points in each iteration. Computing a support point of a polytope
takes in the worst case linear time with respect to the number of vertices.
However, by maintaining the adjacency graph of the polytope’s vertices,
finding a support point takes almost constant time, when frame coher-
ence is high. Using the Dobkin-Kirkpatrick hierarchical polytope repre-
sentation [27], the worst-case bound for computing a support point can
be reduced to O(logn) for n vertices [20]. An interesting extension of
the DK representation would be a polytope representation for which it
takes O (logn) time in worst case, and, when frame coherence is high, con-
stant times for computing a support point. Such a polytope representation
should support local search of support points over the boundary of the
polytope, similar to the adjacency graph, and should make clever use of
the shortcuts provided by the DK representation.

For reducing the number of pairwise object intersection tests among a
collection of freely moving objects, we proposed the use of an incremental
sweep-and-prune algorithm, which maintains the pairs of objects whose
bounding boxes overlap. This algorithm allows update of the list of object
pairs in time that is close to being linear in the number of moving objects,
when frame coherence is high. Similar time bounds might be achieved by
applying a three-dimensional generalization of the fieldtree [34].
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In general, OBB trees yield the best performance of all bounding vol-
ume hierarchies currently used for testing intersections between complex
shapes. It shows that the relatively high cost of testing a pair of OBBs for
overlap is largely made up for by its tight fit. In this respect, it may be a
good idea to take this one step further.

The convex hull of a set of polytopes is in general smaller than the
smallest OBB of the set. However, the cost of testing a pair of convex hulls
for overlap is considerably higher than for OBBs. If the cost of testing a
pair of convex hulls for overlap is sufficiently small, a hierarchy of convex
hulls for a set of polytopes might perform better than an OBB tree.

The cost of overlap testing for convex hulls may be reduced by exploit-
ing coherence. For instance, by exploiting frame coherence, we can reduce
the cost of each overlap test to almost constant time, as described in Chap-
ter 4. Moreover, overlap tests on the child hulls of an internal node may
repeat some of the computations performed for overlap tests on the par-
ent node’s convex hull. For instance, the same support points will often be
computed for both the parent and the child hulls. Hence, by caching and
reusing these computed values, we may speed-up hull tests for the child
nodes, if the hull test for the parent node fails.

Using convex hulls as bounding volumes in volume hierarchies seems
promising. However, in order to exploit the different types of coherence,
intricate data structures and algorithms are needed. Altogether, we reckon
convex hull hierarchies to be well-worth examining further.

Finally, we would like to hint at a topic that has received a lot of at-
tention in the graphics community lately, namely progressive meshes [55].
A progressive mesh representation is a way of storing triangle meshes,
that allows selective refinement of parts of the mesh. This is useful in in-
teractive graphics, since it allows maintaining at a given time only those
parts of a shape in memory, that are actually rendered. This results in
higher rendering performance, since fewer triangles need to be processed,
a lower storage usage, and a lower transmission bandwidth for networked
graphics architectures.

Storage usage and transmission bandwidth are also critical for shape
representations used for collision detection. Hence, progressive shape rep-
resentations of complex models may be an interesting research topic in
the context of collision detection as well. For this purpose, the progres-
sive shape representations should include a description of the bounding
volume hierarchy used for speeding up intersection testing. The bounding
volumes that are traversed during an intersection test can be loaded on de-
mand, i.e., whenever a bounding volume test fails, the bounding volumes
of the child nodes are loaded and tested.



Appendix A

Linear Analysis

Although the content of this section is explained similarly, and often more
thoroughly, in the bulk of geometry literature, for instance in [23], we still
find it useful to include it since it serves as an easy reference and an intro-
duction to the notation used in this thesis.

A.1 Notational Conventions

In this section we establish the notational conventions used throughout
this text. The reader is assumed to have a basic grasp of linear algebra
and set theory; it is not our objective to provide all the formalities of the
mathematical concepts used in this thesis.

The set of real numbers is denoted by R. In the context of vector spaces,
real numbers are referred to as scalars and denoted by lowercase Greek
letters, such as «, 8, y. The vector space of d-tuples (o, ... , ay) is denoted
by R?. Elements of R are referred to as vectors and denoted by lowercase
boldface letters, such as a, b, c. The zero vector is denoted by 0.

Matrices over R are denoted by uppercase boldface letters, such as A,
B, C. The matrix A = [«;;] denotes the matrix with number «; ; in the
ith row and jth column. The transpose of a matrix A is denoted by AT. In
matrix notation, vectors are regarded as columns, which are m x 1 matrices.
For a set of vectors vyi,...,v, € R™ we denote the m x n matrix with
columns v; as [vy...V,]. :

We consider only square matrices, i.e., matrices with an equal number
of columns and rows. The determinant of a square matrix A is denoted
by det(A). A matrix is called singular iff its determinant is zero, and non-
singular otherwise. The set of nonsingular d x d matrices forms a group,
with matrix multiplication as operator. The identity is the matrix I = [§; i1
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where §;;, referred to as the Kronecker symbol, is defined as

5.1 1 ifi=y
Y71 0 otherwise.

The inverse of a matrix A is denoted by A~1.

A set is defined either by enumeration, such as {x, ... , X,}, or condi-
tionally, such as {x € R” : P(x)}, which is the set of x € R" for which
predicate P(x) is true. Sets are denoted by uppercase italics, such as 4,
B, C. The empty set is denoted by #. The power-set of a set X, denoted
by £(X), is the set of all subsets of X. We will adopt the convention that
functions f : X — Y are silently lifted to £(X) — P(Y ) according to

f(A) ={f():ae A}

A.2 Vector Spaces

A linear combination of n vectors v, .. . , v, is a vector of the form
V=0u1vy+ -+ a,v,.

The span of a set of vectors is the set of linear combinations of vectors in
the set. The span of a single nonzero vector is called an axis. A set of
vectors {vy, ..., v} is said to be linearly independent if the equation

v+ +auv, =0

yields oy = --- = @, = 0. A basis of a vector space is a linearly inde-
pendent set of vectors whose span is the whole space. The number of
vectors in the basis is referred to as the dimension of the space. For a basis
{b1, ..., by} the equation

v=aib; +- -+ a,b,

has exactly one solution for a given vector v. Hence, v is uniquely identi-
fied by the n-tuple (a1, ... , @,) € R" with respect to the given basis. The
scalars ; are called the vector components of v relative to {b;}. In partic-
ular, the components of the basis vectors b; are

b; = (i1,...,8in)-

A linear transformation is a function T that maps vectors to vectors ac-
cording to

T(av + pw) = oT(v) + BT (w).
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Consequently, a linear transformation is determined by the image of the
basis. We consider only linear transformations from a vector space onto
itself. For these transformations, the image of a basis is itself a basis. Let
B’ = {b}}, be the image of a basis B such that the components of b are
given relative to B. The image of a vector x = (a4, ... , ) relative to B is

X =aib] + -+ ayb).
We introduce a matrix B’ = [b}...b}], and write this equation as
x =B'x.

Here, B’ is indeed a basis iff B’ is nonsingular. We will often use the same
symbol to denote a matrix and the corresponding linear transformation.

A.3 Affine Spaces

An affine space consist of a set of points, an associated vector space, and
two operations: the addition of a point and a vector, and the subtraction of
two points. Points are denoted, as vectors, by lowercase boldface letters.
The addition of a point and a vector yields a point according to the rules
p+0=pand (p+v)+w=p+ (v+ w). Conversely, the subtraction of
two points yields a vector according to the rule p+ (q — p) = q. Although
addition and scalar multiplication are not defined for points, we define an
affine combination of points py, ... , p, as “

P=oopo+aip1+ - -+aup, forag+---+a, =1.

This expression makes sense if we are allowed to formally eliminate o
and write

P =Ppo + a1(P1 — Po) + - - - + an(Pr — Po),

which is obviously a point. The affine hull of a set of points A, denoted
by aff(A), is the set of affine combinations of points in A. An affine set
is a set of points that is closed under affine combinations. A set of points
{Po, ..., pn} is called affinely independent if the set {p; — po, ... , p» — po}
is linearly independent. The dimension of an affine set is the number of
points in any affinely independent set, whose affine hull is the affine set,
minus one.
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Figure A.1: An affine transformation in R3

A coordinate system is a tuple of a point and a basis. The point is
called the origin of the coordinate system. For a given coordinate system
with origin pp and basis {by, ... , b,}, the equation

P=po+ab;+---+a,b,

has exactly one solution for a given point p. The point p is uniquely identi-
fied by the vector (a1, ... , @,) € R” with respect to the coordinate system.
The components o; are called the coordinates of p. We identify a point
with the corresponding vector of coordinates relative to the given coordi-
nate system.

An affine transformation is a function T that maps points to points
according to

T(ep +Aq) = aT(p) + pT(q) fora+p=1.

Consequently, an affine transformation is determined by the images of the
basis and the origin of the given coordinate system. Let B represent the
image of the basis, and let ¢ be the image of the origin. The corresponding
affine transformation T is given by

T(x) =Bx +c.

The set of affine transformations from R" onto R" forms a group with
function composition as operator

Ty 0o T1(x) = Bo(Bix+c¢)) +¢p = B2Bix + Boc; + Cy
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and inverse
T'®) =B"'(x—¢) =B 'x - B le.

The identity of the group of affine transformations is I.

A local coordinate system is a coordinate system that is defined rela-
tive to a parent coordinate system. This parent coordinate system in turn
can be a local coordinate system to yet another coordinate system, and so
on. The root of such a hierarchy of relatively defined coordinate system is
referred to as the world coordinate system.

A coordinate system is defined local to a parent coordinate system by
giving the coordinates of its origin and its basis vectors in parent coor-
dinates, i.e., relative to the parent coordinate system. Points given in lo-
cal coordinates may be transformed to parent coordinates by means of an
affine transformation. Let B = [b; - - - b, ], where b; are the local basis vec-
tors in parent coordinates, and ¢ the position of the local origin in parent
coordinates. The affine transformation T(x) = Bx + ¢ maps the local coor-
dinates of a point to parent coordinates. Hence, we can (and do) identify
a local coordinate system with the corresponding affine transformation.

A4 Euclidean Spaces

A Euclidean space is an affine space with a notion of length and distance,
defined by means of the dot product. The dot product of vectors v and w,
denoted by v - w, yields a scalar according to the following rules

1. symmetric: v-w=w-v.
2. bilinear: u- (av+ fw) =au - v+ fu - w.
3. positive definite: v- v > 0 for v # 0.

Note that these rules do not uniquely determine the dot product.
In order to determine the dot product, we introduce a basis {ey, . .. , e,},
referred to as the standard basis, for which

e -e; = J;j.

Within the scope of this thesis we assume that the basis of the world coor-
dinate system is the standard basis.
The length of a vector v, denoted by ||v||, is defined as

IVl = V¥V,
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The distance between two points p and q, denoted by d(p, q) is the length
of the vector p — q;

d(p.q = |ip—qll.
The angle o between two nonzero vectors v and w is defined by

VoW
= O<a<nm
Iviiiwi

os(a)

A pair of vectors v and w are said to be orthogonal, denoted by v L w,
if v-w = 0. It can be proven that a set of mutually orthogonal nonzero
vectors is linearly independent. A basis {b;} for which b; - b j = &ij, as for
the standard basis, is called orthonormal. For vectors v and w relative to
an orthonormal basis we find that the dot product is given by

v-w=vlw.

A Cartesian system is a coordinate system that has an orthonormal basis.

When we do not care about the length of a vector, we often refer to
the vector as direction, or orientation (for normals to an oriented plane).
We may identify a direction or orientation by a unit vector, which is a
vector of length one. When we merely want to denote the linear subspace
spanned by a vector, i.e., we are indifferent about multiplications of the
~ vector by a negative number, we refer to the vector as axis. Hence, each
axis corresponds to two directions.

A.5 Affine Transformations

The group of affine transformations has a number of important subgroups.
We have already seen one of them, namely, the group of linear transforma-
tions. The group of translations is formed by the transformations

Tx) =x+c¢.
The group of rotations about the origin is formed by the transformations
R(x) =Bx whereB™! =B" and det(B) = 1.

A matrix B for which B~! = BT is called orthogonal. An orthogonal matrix
maps an orthonormal basis to an orthonormal basis (note the nomencla-
ture!), since for orthogonal B and orthonormal basis {b;} we have

(Bb;) - (Bb;) = (Bb;)"(Bb;) = bB"Bb; =b[b; =b; -b; = 8.
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Furthermore, it follows that any matrix that maps an orthonormal basis to
an orthonormal basis is necessarily orthogonal.

The group of rigid motions in R" is the supergroup of translations and
rotations. The group of length-preserving transformations is formed by
the set of affine transformations T for which

ITE) =TI = lIx -yl

holds for all points x and y. An affine transformation T(x) = Bx + c¢ is
length-preserving iff B is orthogonal, since

ITx) — T = |Bx —By| = [Bx - y)| = vVBx —y) -B(x —y),

which is reduced to «/(x—y) - (x —y) = ||x — y|| iff B is orthogonal.
A reflection in a plane through the origin is an affine transformation of
the form

W(x) = Bx where B is orthogonal and det(B) = —1.

Any length-preserving transformation is either a rigid motion or a compo-
sition of a translation and a reflection [23].

The group of uniform scalings about the origin is the group of trans-
formations of the form

Ux) =ax fora #0.

Compositions of length-preserving transformations and uniform scalings
constitute the group of angle-preserving transformations. For each angle-
preserving transformation T an « > 0 exists, such that for arbitrary points
xandy

ITX) =TI = allx—yll.

The group of nonuniform scalings about the origin is the group of trans-
formations of the form

S(x) = [ajj]x whereq;; #0iff i = j.

Notice that the group of uniform scalings is a subgroup of the group of
nonuniform scalings.

As shown in [43], any affine transformation A can be constructed as a
composition of a translation T, two rotations Ry and Rg, and a nonuniform
scaling S, such that ‘

A=ToRoSoRg.
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Affine Transformations

Angle-preserving

Length-preserving

/" Nonuniform
Scalings

Figure A.2: The group of affine transformations. The dashed ellipses de-
note the sets of basic transformations, which are the components from
which arbitrary affine transformations are built. Each group of transfor-
mations denoted by a solid ellipse is constituted by compositions of basic
transformations from the sets inside the ellipse.

Here, the rotation and scaling components of an affine transformation can
be found by singular value decomposition of the linear part. Figure A.2
shows a visual representation of the group of affine transformations.

Forn € R"\ {0} and § € R, the (hyper)plane H(n, §) in R” is a set of
points defined by

Hmn,d)={xeR":n-x+§ =0}

The vector n is referred to as a normal of the hyperplane. For ||n|| = 1, it
can be shown that the distance from H(n, §) to a pointpis |n-p+ 4. Itis
left as an exercise to the reader to show that a hyperplane is an affine set.

Let H' be the image of a hyperplane H under affine transformation
T(x) = Bx 4+ ¢. A normal n’ and a scalar &’ such that

H={xeR":n -x+6§ =0}
are found as follows. For x € H’ we deduce

n-B“l(x—c)+6=0 = nTB“l(x—c)—i-B:O
(B H)Tx-c)+5=0
B HTn-(x—c)+6=0.
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We see thatn’ = B™")Tnand & = 6 —nw' - cyieldsn’ - x+6 = 0. If T
is length-preserving then B is orthogonal, and thus (B~!)T = B, in which
case we may transform a normal in the same way as a vector that is the
difference of two points.

The positive closed halfspace defined by a hyperplane H(n, ) is de-
fined as

Htm,8)={xecR":n-x+48 >0}
The positive open halfspace defined by a hyperplane H (n, 8) is defined as
H®m,8) ={(xeR":n-x+68 > 0}

The negative closed and positive open halfspaces are defined similarly.

A.6 Three-dimensional Space

. Here, we will discuss some concepts that apply to three-dimensional space
only. By convention, the world coordinate system in R? is a right-handed
Cartesian system. A coordinate system relative to the world coordinate
system is called right-handed if the matrix [b; b, b3] has a positive deter-
minant, where b; are the basis vectors in world coordinates.

The cross product of two vectors v and w, denoted by v x w, is a vector
determined by the following rules

1. orthogonal: (v x w) L vand (v x w) L w.
2. positively oriented: det[v w vxw] > Oforv, w linearly independent.
3. lv x w| = [Iv]||lw]| sin(a), where « is the angle between v and w.

It can be shown that, for vectors relative to an orthonormal basis, the cross
product is given by

o B B3 —azfh
| X || =|asfr —a1f3].
a3 B3 a1fy — az By
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Appendix B
User’s Guide to SOLID 2.0

B.1 Introduction

SOLID is a library for collision detection of three-dimensional objects un-
dergoing rigid motion and deformation. SOLID is designed to be used in
interactive 3D graphics applications, and is especially suited for collision
detection of objects and worlds described in VRML. Some of its features
are:

e Object shapes are represented by primitive shapes (box, cone, cylin-
der, sphere), and complexes of polytopes (line segments, convex
polygons, convex polyhedra). A single shape can be used to instan-
tiate multiple objects.

e Motion is specified by translations, rotations, and nonuniform scal-
ings of the local coordinate system of each moving object. These
changes can be given absolute or relative to the previous frame. The
local coordinate system can also be set according to an array of six-
‘teen floats or doubles representing a 4x4 column-major matrix of an
affine transformation, as used in OpenGL.

e Deformations of complex shapes can be specified using client-
defined vertex arrays.

e Collision response is defined by the client by means of call-back func-
tions. Response may be defined per object pair, for all pairs contain-
ing a specific object, and as default for all pairs of objects.

* Response call-backs can use collision data describing the configur-
ation of a pair of colliding objects. As collision data can be used: a

153
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point common to both objects, or the closest point pair of the objects
from the previous frame. The latter response type can be used for
approximating the collision plane in physics-based simulations.

e Frame coherence is exploited by maintaining a set of pairs of proxi-
mate objects (incremental sweep and prune of axis-aligned bounding
boxes), and caching separating axes for these pairs. This feature is
optional and may be turned on/off at any time during a simulation.

SOLID is written in standard C++ and relies heavily on the STL. The
library has a standard C API and can be linked to both C and C++ appli-
cations.

B.2 Building Shapes

The commands for creating and destroying shapes are

DtShapeRef dtBox(DtScalar x, DtScalar y, DtScalar z);
DtShapeRef dtCone(DtScalar radius, DtScalar height);
DtShapeRef dtCylinder (DtScalar radius,

DtScalar height);
DtShapeRef dtSphere (DtScalar radius);
DtShapeRef dtNewComplexShape() ;

void dtDeleteShape (DtShapeRef shape) ;

Shapes are referred to by values of DtShapeRef. Currently, the type
DtScalar is defined as double. The command dtBox creates a rectan-
gular parallelepiped centered at the origin and aligned with the axes of the
shape’s local coordinate system. The parameters specify its extent along
the respective coordinate axes. The commands dtCone and dtCy1inder
create respectively a cone and a cylinder centered at the origin and whose
central axis is aligned with the y-axis of the local coordinate system. The
cone’s apex is aty = height / 2. The command dtSphere creates a
sphere centered at the origin of the local coordinate system.

Other shape types based on point data, such as polygon soups, sim-
plicial complexes, (compositions of) convex polyhedra, are created by the
dtNewComplexShape command. For constructing complex shapes the
following commands are used:

DtShapeRef dtNewComplexShape () ;
void dtEndComplexShape() ;
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void dtBegin (DtPolyType type) ;
void dtEnd() ;
void dtVertex(DtScalar x, DtScalar y, DtScalar Z);

void dtVertexBase (const void *base) ;
void dtVertexIndex (DtIndex index) ;
void dtVertexIndices (DtPolyType type, DtCount count,
const DtIndex *indices);
void dtVertexRange (DtPolyType type, DtIndex first,
DtCount count);

A complex shape is composed of d-dimensional polytopes, where d is
at most 3. A d-polytope can be a simplex (point, line segment, triangle,
tetrahedron), a convex polygon, or a convex polyhedron. The type of d-
polytope is specified by a value of DtPolyType, defined as

typedef enum DtPolyType ({
DT_SIMPLEX,
DT_POLYGON,
DT_POLYHEDRON

} DtPolyType;

A d-polytope is specified by enumerating its vertices. This can be done in
two ways. In the first way, the vertices are specified by value, using the
dtVertex command. The following example shows how the facets of a
pyramid are specified.

DtShapeRef pyramid = dtNewComplexShape () ;

dtBegin (DT_SIMPLEX) ;
dtVertex (1.0, 0.0, 1.0);
dtVertex (1.0, 0.0, -1.0);
dtVertex(-1.0, 0.0, -1.0);
dtvertex(-1.0, 0.0, 1.0);
dtEnd () ;

dtBegin (DT_SIMPLEX) ;
dtVertex(1.0, 0.0, 1.0);
dtVertex(1.0, 0.0, -1.0);
dtVertex (0.0, 1.27, 0.0)
dtEnd() ;

!’
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dtEndComplexShape () ;

In the second method, the vertices are stored in an array, and are referred
to by indices. For each complex shape, we can specify a single array. A
vertex array is specified by the command dtVertexBase, which takes
the address of the first element in the array, referred to as the base of the
array, as argument. The command dtVertexIndexis used for specifying
vertices. See the following example:

DtScalar vertices[5 * 3] = {
1.0, 0.0, 1.0,
1.0, 0.0, -1.0
-1.0, 0.0,
-1.0, 0.0
0.0, 1.27,
Y

O -

DtShapeRef pyramid = dtNewComplexShape () ;
dtVertexBase (vertices) ;

dtBegin (DT_SIMPLEX) ;
dtVertexIndex (0) ;
dtVertexIndex (1) ;
dtVertexIndex (2) ;
dtVertexIndex (3) ;
dtEnd () ;

dtBegin (DT_SIMPLEX) ;
dtVertexIndex(0) ;
dtVertexIndex (1) ;
dtVertexIndex(4) ;
dtEnd () ;

dtEndComplexShape () ;

Alternatively, the indices can be placed into an array and specified using
the command dtVertexIndices, as in the following example:
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DtScalar vertices[5 * 3]
1.0, 0.0, 1.0,
1.0, 0.0, -1.0

1]
~

-1.0, 0.0, -

-1.0, 0.0, 1.0,

0.0, 1.27, 0.0
Y
DtIndex facet0[4] = { 0, 1, 2, 3 };
DtIndex facetl[3] = { 0, 1, 4 };

DtShapeRef pyramid = dtNewComplexShape() ;
dtVertexBase (vertices) ;

dtVertexIndices (DT_SIMPLEX, 4, facet0);
dtVertexIndices (DT_SIMPLEX, 3, facetl);

dtEndComplexShape () ;

Finally, a polytope can be specified from a range of vertices using the com-
mand dtVertexRange. The range is specified by the first index and the
number of vertices. In the following example a pyramid is constructed as
a convex polyhedron, which is the convex hull of the vertices in the array.

DtScalar vertices[5 * 3] = {
1.0, 0.0, 1.0,
1.0, 0.0, -1.0,
-1.0,
-1.0,

o O
N O o~
o P
o O

}s;

DtShapeRef pyramid = dtNewComplexShape () ;
dtVertexBase (vertices) ;

dtVertexRange (DT_POLYHEDRON, 0, 5);
dtEndComplexShape () ;

Note that the vertices of a simplex need not be affinely independent,
and the vertices specifying a convex polyhedron need not be extreme ver-
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tices of the convex hull. However, in order to construct a proper convex
polygon, the vertices should be approximately coplanar and specified in
the order as they appear on the boundary.

B.3 Creating and Moving Objects

An object is an instance of a shape. The commands for creating, moving
and deleting objects are

void dtCreateObject (DtObjectRef object,
DtShapeRef shape);

void dtDeleteObject (DtObjectRef object) ;

void dtSelectObject (DtObjectRef object);

void dtLoadIdentity () ;

void dtLoadMatrixf (const float *m);
void dtLoadMatrixd(const double *m);

void dtMultMatrixf (const float *m);
void dtMultMatrixd(const double *m);

void dtTranslate(DtScalar x, DtScalar vy, DtScalar z);

void dtRotate(DtScalar x, DtScalar y, DtScalar z,
DtScalar w);

void dtScale(DtScalar x, DtScalar y, DtScalar zZ);

An object is referred to by a DtObjectRef, which is defined as void *.
Any pointer type may be used to refer to an object. In general, a pointer
to a structure in the client application associated with the collision object
should be used.

An object’s motion is specified by changing the placement of the local
coordinate system of the shape. Initially, the local coordinate system of an
object coincides with the world coordinate system.

The current object is the last created or selected object. The placement of
the current object is changed, either by translations, rotations and nonuni-
form scalings, or by using an OpenGL 4x4 column-major matrix repre-
senting an affine transformation. Placements are specified absolute or rel-
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ative to the previous placement. Rotations are specified using quaternions.
Following example shows how a pair of objects are given absolute place-
ments.

dtCreateObject (&objectl, hammer) ;
dtCreateObject (&object2, nail);

dtSelectObject (&objectl) ;
dtLoadIdentity() ;
dtTranslate(0, 1, 1);
dtRotate (0, 0, 1, 0);

dtSelectObject (&object2) ;
dtLoadIdentity () ;
dtTranslate (0, 1, 0);
dtRotate (0, 0, 0, 1);

B.3.1 Who's Afraid of Quaternions?

A quaternion is a four-dimensional vector. The set of quaternions of length
one (points on a four-dimensional sphere) map to the set of orientations
in three-dimensional space. Since in many applications an orientation de-
fined by either a rotation axis and angle or by a triple of Euler angles is
more convenient, the package includes code for quaternion operations.
The code is found in a library of C++ classes for 3D affine transformations.
The classes are found in the include/3D directory. All the code is inlined
so you do not need to link a library in order to use the classes.

The quaternion class is found in the file Quaternion.h. The class has
constructors and methods for setting a quaternion. For example

Quaternion gl (axis, angle);
Quaternion g2 (yaw, pitch, roll);

gl.setRotation(axis, angle);
g2.setBuler (yaw, pitch, roll);

dtRotate(qgl(X], qll(Y]l, qllZl, gl[w]);
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Also included is a static method Quaternion: :random(), which re-
turns a random orientation.

B.4 Response Handling

Collision response in SOLID is handled by means of callback functions.
The callback functions have the type DtResponse defined by

typedef void (*DtResponse) (
void *client_data,
DtObjectRef objectl,
DtObjectRef object2,
const DtCollData *coll_data)

Here, client_datais a pointer to an arbitrary structure in the client ap-
plication, objectl and object2 are colliding objects, and coll_data
is the response data computed by SOLID.

Currently, there are three types of response: simple, smart and witnessed
response. For simple response the value of coll_data is NULL. For smart
and witnessed response coll_data points to the following structure

typedef struct DtCollData {
DtVector pointl;
DtVector point2;
DtVector normal;

} DtCollData; '

An object of this type represents a pair of points of the respective objects.
The points point1 and point2 are given relative to the local coordinate
system of their respective objects objectl and object2. The normal
field is used for smart response only.

For witnessed response, the points represent a witness of the colli-
sion. As a result of this the global coordinates of the witness points are
equal. For smart response, the points represent the closest point pair of
the objects at placements from the previous time frame. The normal field
contains the difference of the global coordinates of the closest point pair,
i.e.,, normal = Global (pointl) - Global (point2). We will dis-
cuss this type of response more thoroughly further on. :

Response is defined as default response for all pairs of objects, as ob-
ject response for all pairs containing a given object, or as pair response for
a particular pair of objects. The commands for defining and undefining
response are
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void dtSetDefaultResponse (DtResponse response,
DtResponseType type,
void *client_data)
void dtClearDefaultResponse () '

void dtSetObjectResponse (DtObjectRef obj,
DtResponse response,
DtResponseType type,
void *client_data)

void dtClearObjectResponse (DtObjectRef obj)

void dtResetObjectResponse (DtObjectRef obj)

void dtSetPairResponse (DtObjectRef objl,
DtObjectRef obj2,
DtResponse response,
DtResponseType type,
void *client_data)
void dtClearPairResponse (DtObjectRef obijl,
DtObjectRef obij2)
void dtResetPairResponse (DtObjectRef objl,
DtObjectRef obj2)

A response is defined by either a Set or a Clear command. The Clear
command defines the response to be nil (no response).

Initially, the default response is nil and all pairs of objects have a de-
fault response. If for an object pair, one of the objects has an object re-
sponse defined, then this response overrules the default response. A pair
response overrules any object or default response. If for both objects there
is an object response defined, then one of the responses is chosen. In this
case, one of the responses may be forced to be chosen by defining it as a
pair response.

A response is undefined, i.e., reset to a more general setting, by the
Reset commands. The command dtResetPairResponse resets the re-
sponse of a pair of objects to an object response, if one is defined for an
object in the pair, or otherwise to the default response. The command
dtResetObjectResponse resets the responses of the object pairs, for
which no other object response or a pair response is defined, to the default
response. Note that whenever an object is deleted, the object response and
all pair responses that are set for this object are reset automatically.

The DtResponseType is defined by



162 APPENDIX B. USER’S GUIDE TO SOLID 2.0

typedef enum DtResponseType ({
DT_NO_RESPONSE,
DT_SIMPLE_RESPONSE,
DT_SMART_RESPONSE,
DT _WITNESSED_RESPONSE

} DtResponseType

Setting the response type to DT_NO_RESPONSE is equivalent to clearing
the response.

The response callback functions are executed for each colliding pair of
objects by calling -

int dtTest ()

This function returns the number of callback functions that are executed.

B.4.1 Smart Response

For physics-based simulations it is often necessary to have a representa-
tion of the collision plane of a pair of colliding objects in order to compute
the reaction forces. From a single configuration of two colliding objects it
is hard to compute a collision plane, since there is no knowledge of how
this configuration came about. Therefore, SOLID uses the configuration
of the objects from the previous time frame for approximating the colli-
sion plane. If the objects were disjoint in the previous time frame, then the
vector defined by the difference of the closest point pair of the objects is a
good approximation of the collision plane’s normal.

By selecting smart response for a pair of objects, the closest point pair
and the normal from the previous time frame are computed. The points
pointl and point2 are given in local coordinates and the normal rel-
ative to the global basis and pointing away from object2. In order to
compute these values, the configuration of objects must be stored in each
time frame. This is done by calling

void dtProceed() ;

Note that in order to guarantee that a nonzero normal can be found, the
dtProceed command may only be called if all object pairs for which a
smart response is defined, are disjoint! The common way of guarding this
is by iteratively doing collision tests and changing the placements until
the objects are disjoint. Note that it is possible and often necessary to call
dtTest multiple times before calling dt Proceed.
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B.5 Deformable Models

SOLID handles deformations of complex shapes. In this context deforma-
tions are specified by changes of vertex positions. Complex shapes that are
defined using a vertex array in the client application may be deformed by
changing the array elements, or specifying a new array. SOLID is notified
of a change of vertices by the command

void dtChangeVertexBase (DtShapeRef shape,
const void *base);

When using convex polygons or convex polyhedra as shape components,
the client should warrant that the vertex changes do not violate the con-
vexity and topology (planar graph embedding) of a component!

Note that in order to use smart response for deformable shapes, the
change of vertices should be done by specifying a new array. The vertex
array of the previous time frame should be kept intact, otherwise SOLID
can not determine the configuration of objects of the previous time frame.
This is best handled by applying a ‘double buffering’ technique. After a
call to dtProceed, the new vertex positions are placed in the free buffer
of a pair of vertex buffers, and dtChangeVertexBase is called using this
buffer, after which the other buffer becomes the free buffer.

B.6 Caching

In computer animations there is usually a lot of frame coherence (objects
move smoothly). In these cases, caching and reusing earlier computations
will yield a considerable performance improvement. The caching option of
SOLID enables an incremental sort on the set of objects, in order to reduce
the number of pairwise intersection tests. Moreover, when the cashing op-
tion is on, data from earlier intersection tests is stored and used for faster
determination of the intersection status of a pair of objects. Caching is
enabled and disabled by

void dtEnableCaching ()
void dtDisableCaching ()

Caching may be enabled or disabled at any time during a simulation. This
option is enabled by default.
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Samenvatting

Met de huidige interactieve computeranimatie-systemen kunnen com-
plexe driedimensionale omgevmgen gesimuleerd worden. Zo'n gesimu-
leerde omgeving bevat in veel gevallen bewegende elementen, bijvoor-
beeld in 3D computerspellen en simulatoren. We duiden dergelijke toe-
passingen ook wel aan met de term virtuele werkelijkheid.

Zeer bepalend voor het realiteitsgehalte van een gesimuleerde omge-
ving is de beperking dat twee materiéle objecten niet tegelijkertijd het-
zelfde punt in de ruimte kunnen innemen. Geometrische objecten die ge-
representeerd worden met behulp van computermodellen zijn over het
algemeen niet aan deze beperking onderworpen. Configuraties van el-
kaar doorsnijdende paren van objecten, botsingen genaamd, kunnen voor-
komen en moeten opgelost worden door het animatie-systeem.

De eerste taak hierin is het detecteren van botsingen. Verder moet het
animatie-systeem vaak gegevens hebben over de configuratie van de bot- .
sende objecten om de botsingen op te kunnen lossen. Bijvoorbeeld, voor
het berekenen van de elastische reactiekrachten van een paar botsende ob-
jecten hebben we een botsingsvlak en een botsingspunt nodig. We noemen
deze gegevens responsgegevens.

In dit proefschrift behandelen we methoden voor het detecteren van
botsingen tussen bewegende driedimensionale objecten. We beschouwen
botsingsdetectie-methoden voor objecten gerepresenteerd door modellen
die bestaan uit geometrische primitieven, zoals polygonen, convexe po-
lyhedra, bollen, kegels, en cilinders. Daarnaast beschrijven we methoden
voor het bepalen van responsgegevens voor deze object-typen.

De belangrijkste bijdragen van dit proefschrift zijn:

e Een verbeterde algoritme voor het detecteren van botsingen tussen
convexe objecten. Deze algoritme, ISA-GJK genaamd, is een verbe-
tering van de Gilbert-Johnson-Keerthi algoritme, een algoritme voor
het berekenen van de afstand tussen twee convexe objecten. De ver-
beteringen hebben betrekking op de performance, de robuustheid en
de toepasbaarheid.
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e Een datastructuur, AABB-tree genaamd, voor het versnellen van bot-
singsdetectie tussen modellen die uit een groot aantal primitieven
bestaan. Het sterkste punt van de AABB-tree is het feit dat hij snelle
botsingsdetectie tussen deformeerbare objecten mogelijk maakt.

e Een software-bibliotheek voor het detecteren van botsingen tus-
sen driedimensionale objecten, genaamd SOLID. Enkele innovatieve
kenmerken van SOLID zijn: (a) het ondersteunen van een mix van
primitieve typen, (b) het ondersteunen van complexe deformeerbare
vormen, en (c) het bepalen van een botsingsvlak en een botsingspunt

- als responsgegevens voor fysische simulaties.
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STELLINGEN

bij het proefschrift

Collision Detection in Interactive
3D Computer Animation

van

GINO VAN DEN BERGEN



—1

De algoritme in [1] voor het testen van intersecties tussen driehoeken is
zonder meer toepasbaar op convexe polygonen in het algemeen.

[1] T. Méller. A fast triangle-triangle intersection test. Journal of Graphics Tools,
2(2):25-30, 1997.

—

Het bewijs van convergentie van de iteratieve methode voor het vinden
van een separating axis van een paar polytopen, beschreven in [1], is niet
correct. De algoritme in [1] gebruikt naast de iteratiestap uit dit bewijs
nog een tweede iteratiestap die wel eindiging garandeert voor polytopen.
Deze tweede iteratiestap is van cruciaal belang voor de eindiging van de
algoritme, en is niet slechts nodig vanwege numerieke onnauwkeurighe-
den, zoals beweerd in [1].
{1] K. Chung and W. Wang. Quick collision detection of polytopes in virtual
environments. In Proc. ACM Symposium on Virtual Reality Software and Tech-
nology pages 125-131, 1996.

—3—

In tegenstelling tot het probleem van het vinden van een gemeenschappe-
lijk punt van een paar polytopen, kan het probleem van het vinden van
een separating plane tussen twee polytopen, zoals gedefinieerd in dit proef-
schrift, niet als een lineair-programmeringsprobleem uitgedrukt worden.

—l

De bewering in [1] dat de algoritme in [2], voor het rapporteren van alle
elkaar overlappende paren in een collectie d-dimensionale hyperrechthoe-
ken, een lagere tijdscomplexiteit heeft dan de algoritme in [3] is niet juist.
Gegeven een collectie van n hyperrechthoeken, kost het met de algoritme
in [2] namelijk O(n10g?=3 n 4 £) tijd om alle k elkaar overlappende paren
te rapporteren, terwijl met de algoritme in [3] hiervoor O (n log!~'n + k)
tijd nodig is.
[1} E P. Preparata and M. 1. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.
[2] H. Edelsbrunner. A new approach to rectangle intersections, Part IL Intern.
J. Computer Math., 13:221-229, 1983.
[3] H. W. Six and D. Wood. Counting and reporting intersections of d-ranges.
IEEE Transactions on Computers, C-31:181-187, 1982.



—5—

De kracht van een softwarebibliotheek ligt in de balans tussen functio-
naliteit en flexibiliteit. De functies die een softwarebibliotheek aanbiedt
mogen de gebruiker zo min mogelijk beperken in de keuze van zijn data-
representaties. Het succes van OpenGL en de Standard Template Library is
hiermee te verklaren.

—

Het template-mechanisme van de programmeertaal C++ bevordert in gro-
tere mate het hergebruik van code dan het inheritance-mechanisme.

_—7

De methode van programmeren van E. W. Dijkstra en W. H. J. Fejjen [1] had
een bredere belangstelling genoten indien deze zich aan de gangbare wis-
kundige, logische en algoritmische notaties hadden gehouden.

[1] E. W. Dijkstra en W. H. J. Feijen. Een methode van programmeren. Academic
Service, Den Haag, 1984.

8

In een wereld waarin het software-aanbod steeds meer in handen komt
van enkele grote bedrijven, is het de maatschappelijke taak van de univer-
siteiten om tegenwicht te bieden aan de invloed van deze bedrijven door
naast publicaties, software-technologie in de vorm van vrije software pu-
bliek beschikbaar te stellen. Met vrije software wordt hier bedoeld: soft-
ware waarvan de broncode en de documentatie vrij beschikbaar is zodat
een breed publiek er kennis van kan nemen en gebruik van kan maken.

—9

In de praktijk blijkt vaak dat het eisenpakket dat aan een ontwerp wordt
gesteld achteraf moet worden bijgesteld. Men kan in zo'n geval spreken
van reversed requirements engineering.

—10—

De theorie dat de meest elementaire objecten in het universum snaren zijn,
zoals recentelijk aangenomen door theoretische natuurkundigen, is al veel
langer gemeengoed onder gitaristen.
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