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Abstract 
This paper presents a collision detection algorithm for 3D simulated environments. It describes the implementa-
tion of a collision detection approach using the Overlapping Axis-Aligned Bounding Box (OAABB) and R-trees 
to improve performance. Experimental results show that this implementation is effective in determining interac-
tively intersections between 3D models.    
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1. INTRODUCTION 
It is a complex problem to find collisions in virtual envi-
ronments in real-time. Collision detection is a very time 
consuming task. In some environments it can easily con-
sume up to 50% of the total run time. In real industrial 
case studies, 3D virtual prototypes can be very complex 
with thousands of primitives. Therefore developing real-
time collision detection algorithms for complex environ-
ments is still a challenging research issue. In such envi-
ronments, it is important to maintain at least a frame rate 
of 20Hz to create a usable simulator. 
The problem of finding collisions in an environment is 
more complex for the narrow phase. The broad phase of 
the collision detection problem is responsible for discard-
ing pairs of objects that do not collide. The narrow phase 
determines if two objects are colliding.  
This paper describes a collision detection algorithm 
based on an R-tree structure of Axis-Aligned Bounding 
Boxes (AABB) and using the Overlapping Axis-Aligned 
Bounding Box (OAABB) to solve the narrow phase of 
the collision detection problem. It finds intersections be-
tween two objects. Experimental results show that the 
algorithm presented in this paper determines intersections 
at interactive rates. 

2. BACKGROUND 
To find collisions between two 3D objects it is frequently 
used bounding volume hierarchies (BVH) that organize 
the triangles of an object. In this way, performance is 
improved by reducing the number of pairs of bounding 
volume tests.  
Suppose that the bounding volumes of two objects are 
organized in two hierarchical trees of bounding volumes 
(BV) A and B. The classic scheme for hierarchical colli-
sion detection is a simultaneous, recursive traversal of 
two bounding volumes trees of A and B. This can be de-
scribed by the algorithm presented in Figure 1. 

TraverseTrees (A, B) 

update BV of B into coordinate system of A 

if A and B do not intersect then 

 return 

if A and B are leaves then  

  update triangle B into coordinate system of A 

  return intersection of triangles enclosed by A and B 

else 

  if A is leaf and B is an inner node then 

  for all children B[i] do 

   TraverseTrees (A, B[i]) 

 else 

  if A is an inner node and B is a leaf node then 

   for all children A[i] do 

    TraverseTrees (A[i], B) 

  else 

   for all children A[i] and B[j] do 

  TraverseTrees (A[i], B[j]) 

Fig. 1: Classical hierarchical traversal scheme for colli-
sion detection.  

Nevertheless, Zachmann and Knittel [Zachmann03] iden-
tify several problems in the traditional traversal. In par-
ticular, they showed that several nodes in the hierarchy 
trees of A and B are visited more than once. The second 
problem is that the nodes of the bounding volume tree of 
B, for example, have to be transformed into the local co-
ordinate system of A. As a consequence of the first prob-
lem, this transformation is repeated several times for the 
same node, reducing performance. The algorithm pre-
sented in this paper solves these problems. 
There are several public toolkits to solve the narrow 
phase of the collision detection based on bounding vol-
ume hierarchies. They differ on the type of bounding 
volume implemented.  



 

 

SOLID [Bergen97] and OPCODE [Terdiman01] uses 
axis-aligned bounding boxes (AABB). RAPID 
[Gottschalk96], V-COLLIDE [Hudson97], PQP [Lar-
sen99], H-COLLIDE [Gregory99], use oriented bound-
ing boxes (OBB). QuickCD [Klosowski98] and Dop-
Tree [Zachmann98] uses k-dops; and Swift++ [Eh-
mann01] uses convex hulls (CH). There are also hybrid 
approaches like QuOSPOs [He99] that use a combination 
of OBBs and k-dops.  
It is very difficult to compare different approaches since 
performance also depends on the shapes of the models, 
type of contact, size of the models and others.  
The main advantage of SOLID, OPCODE and Box-Tree 
is that AABBs are faster to intersect. When using 
AABBs, only six comparisons are required to find out if 
two axis-aligned bounding boxes are overlapping. It is 
also possible to say that two AABBs are disjoint, in the 
best case situation, with only one comparison. Another 
advantage of using AABBs is that it is simple to update 
these volumes as an object rotates and translates.  
RAPID approximates 3D objects with hierarchies of ori-
ented bounding boxes (OBBs). An OBB is a rectangular 
bounding box with an arbitrary orientation so that it en-
closes the underlying geometry more tightly. The repre-
sentation of an oriented bounding box encodes position, 
widths and orientation. The main advantage of RAPID is 
that OBBs are better approximations to triangles reduc-
ing effectively the number of intersecting operations.  
V-COLLIDE solves the broad-phase of the collision de-
tection using a sweep-and-prune operation to find pairs 
of objects potentially in contact. It uses RAPID to find in 
the narrow phase which pairs of objects intersect.  
PQP solves the narrow phase and is also based on the 
RAPID library. It uses oriented bounding boxes to find 
intersecting objects. PQP also computes the distance be-
tween closest pair of points using swept spheres.  
H-COLLIDE is a framework to find collisions for haptic 
interactions. It uses a hybrid hierarchy of uniform grids 
and trees of OBBs to exploit frame-to-frame coherence. 
It was specialized to find collisions between a point 
probe against 3D objects.  
The QuickCD and Dop-Tree implementations build a 
hierarchy tree of discrete orientation polytopes. Discrete 
orientation polytopes, or k-dops, are convex bounding 
volumes whose faces are determined by halfspaces 
whose outward normals come from a small fixed set of k 
orientations. The main advantage of using discrete orien-
tation polytopes is that k-dops are better approximations 
to the underlying geometry than AABBs with the advan-
tage of its low cost compared to OBBs. A major draw-
back of QuickCD is that allows only one moving object.  
Swift++ builds a hierarchy of convex hulls and intersec-
tion is tested using a modified Lin-Canny [Lin91] closest 
feature algorithm.  

He [He99] uses a hybrid approach that combines OBBs 
and k-dops called QuOSPOs. This approach provides a 
tight approximation of the original model at each level.  
Since collision detection is a very demanding task, re-
searchers are also working in using existing graphics 
accelerated boards (GPU) [Baciu03, Knott03, Govinda-
raju03, Yoon04] or dedicated hardware [Raabe06] to 
accelerate collision detection by hardware. 
Algorithms using graphics hardware use depth and sten-
cil buffer techniques to determine collisions between 
convex [Baciu03] and non-convex [Knott03] objects. 
CULLIDE [Govindaraju03] is also a GPU based algo-
rithm that uses image-space occlusion queries and OBBs 
in a hybrid approach to determine intersections between 
general models with thousands of polygons. MRC 
[Yoon04] deals with large models composed of dozens 
of millions of polygons by using the representation of a 
clustered hierarchy of progressive meshes (CHPM) as a 
LOD hierarchy for a conservative error bound collision 
and as a BVH for a GPU-based collision culling algo-
rithm.  
These GPU-based algorithms are applicable to both rigid 
and deformable models since all the computations are 
made in the image-space. Collision detection methods 
using GPUs have the disadvantage that they compete 
with the rendering process, slowing down the overall 
frame rate. Furthermore, some of these approaches are 
pure image based reducing their accuracy due to the dis-
crete geometry representation. 

3. COLLISION DETECTION 
This section presents the latest implementation details of 
the initial ideas [Figueiredo03] of an approach for deter-
mining intersecting surfaces and triangles between a pair 
of 3D objects. For virtual prototyping applications, three-
dimensional objects can be defined by a collection of 
surfaces, where each surface is tessellated individually 
and represented as a collection of triangles. For virtual 
environment or gaming applications, 3D objects can be 
simply defined as a polygonal soup. 
The time to determine collisions between two objects 
using BVH depends on: (1) the cost of intersecting and 
updating bounding volumes; (2) the cost of intersecting 
triangles; and (3) on the number of such operations.  
The approach presented in this paper is supported by R-
tree hierarchies of axis-aligned bounding boxes and the 
Overlapping Axis-Aligned Bounding Box to reduce the 
cost and the number of updating and intersection opera-
tions and therefore improve performance. 
The choice of bounding volume type influences perform-
ance of the collision detection process. The implementa-
tion of the collision detection algorithm presented in this 
paper uses axis aligned bounding boxes because they are 
faster to intersect. 
It was decided to use R-trees [Guttman84] to build 
bounding volume hierarchies and organize 3D geometry 
of objects to improving the performance of the collision 
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detection process. R-trees are a good choice for collision 
detection because first, at any level of the tree, each 
primitive is associated with only a single node. Secondly, 
in an R-tree all leaf nodes appear on the same level. 
Third, because the depth of a R-tree storing n primitives 
is logm n , m is the minimum number of children of a 
node. 
To speed up the process of finding collisions each object 
is represented by an R-tree data structure in its own local 
coordinate system (Figure 1). A hierarchical tree is built, 
grouping neighbouring surfaces. The leaf nodes of the R-
tree point to the geometry of the surfaces that define the 
object. For two objects, it checks for collisions between 
surfaces which are in the neighbourhood, eliminating 
comparisons with those that are far away. 

 

 

 

 

 

Fig. 1: Each object of the scene graph is represented by an R-
tree to organize its surfaces [Figueiredo03].  

Surfaces from a three-dimensional model can be complex 
with a large number of triangles. For this reason, the im-
plementation described in this paper also uses an R-tree 
to organize the triangles spatially (Figure 2) and hence to 
quickly reject triangles that cannot intersect. In this ap-
proach, an R-tree is computed for each surface, grouping 
neighbouring triangles to eliminate comparisons with 
those that are faraway from the area of intersection. 
 
 
 

Fig. 2: Each surface of the 3D model is also represented by an R-
tree data structure to organize spatially its triangles.  

 
The proposed algorithm is also based in the use of the 
Overlapping Axis-Aligned Bounding Box, OAABB (A, 
B), of two geometric primitives, to improve the perform-
ance of the collision detection process. The OAABB is 
defined as the volume that is common to two axis-
aligned bounding boxes of A and B.  
The OAABB is used to filter out primitives that cannot 
intersect. Consider the example of Figure 3. Surface 2S  
from object A cannot intersect object B since it is not 
intersecting the OAABB. In this way, it is possible to 
quickly filter out all surfaces from both objects that do 
not intersect the OAABB.  

 
 

Fig. 3: The Overlapping Axis-Aligned Bounding Box (OAABB) 
concept shown in 2D [Figueiredo03].  

The algorithm to find intersecting surfaces is presented in 
Figure 4.  

S-CD_Collide (A, B) 

1:AABBB(A)=MB A AABBA(A)//update Cover BV 

2:if (AABBB(A) do not intersect AABBB(B))     return 

3:Determine OAABBB(A, B) 

4:DescendRtree(SBV(B), OAABBB(A,B)) 

5:for each surface from SBV(B) intersecting 
OAABBB(A,B) 

6: DescendRtree(TBV(B), OAABBB(A,B)) 

7: for each triangle T(B) from TBV(B) intersecting 
OAABBB(A,B) 

8:  Update triangle T(B) geometry into coord. sys-
tem of A 

9:  Compute the new optimal AABBA(T(B)) for T(B) 

10: DescendRtree(SBV(A), AABBA(T(B))) 

11: for each surface from SBV(A) 

12:  DescendRtree(TBV(A), AABBA(T(B))) 

13:   Intersect T(A) and T(B) 

Fig. 4. Pseudo-code for finding intersecting surfaces and 
triangles. 
The collision detection process first checks if objects A 
and B are disjoint (line 1-2 in Figure 4). The bounding 
volumes of each object are originally computed in the 
object’s local coordinate system, AABBA(A) and 
AABBB(B), respectively. The transformation matrix that 
converts the local representation of object A into the local 
coordinate system of object B is defined as MB A. The 
bounding volume of object A is updated to the coordinate 
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system of object B, by computing the cover axis-aligned 
bounding box, AABBB(A). Once the bounding volumes of 
each object are in the same coordinate system they can be 
checked for overlap. If this pair of AABBs does not 
overlap, then the corresponding two objects are not inter-
secting and the process ends. If they overlap, then the 
system determines the Overlapping Axis-Aligned Bound-
ing Box, OAABBB(A,B) of the two objects (line 3 in Fig-
ure 4), which is defined in the local coordinate system of 
object B.   
The next step of the collision detection process deter-
mines the surfaces from object B intersecting the 
OAABB (line 4 of Figure 4). As mentioned before, the 
surfaces of object B are organized in a Surface Bounding 
Volume R-tree called SBV(B). The surfaces of B are 
stored at the leaf nodes of the SBV(B) R-tree. By de-
scending this R-tree, the surfaces of object B that do not 
intersect the OAABBB(A,B) are filtered out. Only the sur-
faces at the leaf nodes intesecting the OAABBB(A,B) are 
candidate for collision. 
Each surface of object B is tessellated and represented by 
a collection of triangles. The triangles of each surfaces 
are also represented in its own Triangle Bounding Volu-
me R-tree data structure, organizing its triangles into sub-
regions. The next step of the collision detection process 
descends to the Triangle Bounding Volume R-tree 
TBV(B) of each candidate surface from object B (lines 5 
and 6 of Figure 4). This stage determines the triangles of 
object B intersecting the OAABB.  
Using the OAABB, the collision detection manager fil-
ters out surfaces and triangles of object B that cannot 
intersect.  
The triangles of object B intersecting the OAABB are 
transformed into the coordinate system of object A (line 
8). At this point is also determined the triangle’s optimal 
bounding volume (line 9). The new optimal AABB is 
built by computing the new minimal and maximal values 
in the x, y and z axes, defining the new extents of the 
bounding volume. This stage computes the optimal 
bounding volume, since it is faster than computing the 
cover AABB. Furthermore, the optimal AABB encloses 
the triangle better than a cover AABB.  
Then, the collision detection process descends the Sur-
face Bounding Volume SBV(A) R-tree for object A (line 
10 of Figure 4). In this step it finds surfaces of object A 
intersecting the triangle’s optimal AABBA(T(B)) of object 
B.  
To determine if a pair of surfaces intersects, it is neces-
sary to find a pair of intersecting triangles. Then, the col-
lision detection process descends to the Triangle Bound-
ing Volume R-tree TBV(A) of each candidate surface 
from object A (lines 11 and 12 of Figure 4). This stage 
determines the triangles of object A who’s bounding 
volumes intersect the triangle’s optimal AABB of object 
B.  
The final step is to proceed with the intersection between 
pairs of candidate triangles (line 13) implemented with 

[Guige03] algorithm. If there is a pair of intersecting 
triangles then the corresponding surfaces is intersecting.  

4. EXPERIMENTAL RESULTS 
This section presents the performance evaluation results 
of the proposed collision detection algorithm described in 
this paper.  
Two examples are presented: i) a process plant case 
study and ii) a grid. All the experiments conducted in the 
following paragraphs run in an Intel Core 2 Duo T7300, 
2GByte of RAM memory at 2GHz.  
The first example is a real application from maintenance 
simulation in virtual prototyping environments. It is a 
case study (Figure 5), from UMIST in Manchester that 
shows the assembly of a process plant. This example is 
used to test the collision detection in virtual prototyping 
environments where it is important to find intersecting 
surfaces. This scenario has a total number of eight parts, 
one thousand and seventy three surfaces and 24 415 tri-
angles.  

 

Fig. 5. Process plant case study. 

The collision detection implementation can be configured 
to determine first intersecting surface, all intersecting 
surfaces or all the intersecting triangles between three-
dimensional components in a virtual prototyping envi-
ronment. The process plant case study was tested with an 
interaction sequence of 233 intersecting steps that simu-
late assembly operations. Table 1 presents the time to 
find first, all intersecting surfaces and all intersecting 
triangles.  

Table 1. Collision detection time to find intersecting surfaces 
for the process plant. 

 
Time in milliseconds per step to determine: 

 

Using OAABB Yes No 

(i) first intersecting surface per step 0.09 0.28 

(ii) all intersecting surfaces 0.94 1.75 

(iii) all intersecting surfaces and all intersecting 
triangles  1.26 2.06 

 



 

 

The proposed collision detection algorithm achieves inte-
ractive rates in real industrial applications as desired.  
Table 1 also presents the time obtained when the over-
lapping axis-aligned bounding box (OAABB) approach 
is not used. It is seen a significant improvement in per-
formance by using the overlapping axis aligned bounding 
box.  
This improvement is explained by table 2. The cost of 
finding collisions depends on several factors. The choice 
of type of bounding volume influences the number and 
the cost of executing bounding volume intersections. For 
AABBs and k-dops the cost and the number of updating 
bounding volumes also influences performance. Table 2 
shows an effective reduction in the number of AABBs 
tests and update bounding volume operations explaining 
the better performance obtained by the OAABBs.  

Table 2. Average number of operations per step to determine 
intersections for the process plant. 

Number of operations: First Triangle All Triangles 

Using OAABB Yes No Yes No 

AABBs tests 1263 2915 21836 30663 

AABBs updates 102 713 537 3279 

 
It is also important to compare the performance of this 
algorithm with other collision detection toolkits. Table 3 
presents the times obtained comparing the implementa-
tion described in this paper, named as S-CD (Surface 
Collision Detection), with PQP, RAPID, OPCODE and 
Dop Tree. The times presented were obtained in the de-
termination of the first intersecting triangle and also for 
all the intersecting triangles. S-CD is effective in the de-
termination of intersections interactively.  

Table 3. Time to find intersections for the process plant. 

Time to find intersections (milli-
seconds): 

First 
Triangle 

All 
Triangles 

PQP 0.40 4.96 

RAPID 0.12 3.62 

Dop Tree 0.04 17.29 

OPCODE 1.52 2.09 

S-CD 0.09 1.26 

 

The second is a synthetic model of a grid (Figure 6) with 
414 720 triangles available from a benchmarking suite 
[Trenkel, et al. 2007] to compare in close proximity pair 
wise static collision detection algorithms for rigid ob-
jects.  
This example is used to test the performance of collision 
detection in finding intersecting triangles in environ-
ments where objects are defined as polygonal soups.  
The benchmark generates a number of positions and ori-
entations for a predefined distance in close proximity. It 
does not test performance of collision detection ap-

proaches when intersections occur. It is available to 
download together with a set of objects that cover a wide 
range of possible scenarios for collision detection algo-
rithms, and a set of precomputed test points for these 
objects.  

 
Fig. 6. Model of a grid object with 414 720 faces. 

Figure 7 shows the timing results obtained for the 
benchmark application using two grid objects.  
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Fig. 7: Results of the benchmark for the grid scene with 414 720 
faces. The x-axis denotes the relative distance between the ob-
jects, where 1.0 is the size of the object. Distance 0.0 means that 
the objects are almost touching but do not collide. The abbrevia-
tions for the libraries are as follows: bx=BoxTree, do=Dop-Tree, 
pqp=PQP, vc=V-Collide, op=Opcode, so=FreeSOLID, s-cd=S-
CD. 



 

 

To test performance the benchmark manager keeps one 
grid object static. The second grid object is placed at spe-
cified test positions and orientations. The x-axis in Figure 
7 denotes the relative distance between the objects, whe-
re 1.0 is the size of the object. Distance 0.0 means that 
the objects are almost touching but do not collide. Since 
collision detection is mostly used to avoid interpenetra-
tions, this position is the most important in many simula-
tions, because most of the times, objects are allowed to 
collide only a little bit and then the collision handling 
resolves the collision by backtracking. Distance 0.0 is 
also the most time consuming (Figure 7) because the 
bounding volume hierarchies for the two objects overlap, 
but objects do not.  
The time to find intersections is greater at position 0.0 
and then as the distance between objects increases the 
time to find intersections reduces. As distance between 
the two objects increase then the overlap between the two 
bounding volume hierarchies decrease. In this case, the 
bounding volume of an object is found to do not intersect 
the bounding volume of the other object higher in the 
tree, then it cannot intersect any object bellow that node. 
Thus, they are all rejected quicker and it is faster to con-
clude that objects do not intersect.  
Figure 7 shows that S-CD runs interactively at distance 
0.0 as desired. For virtual environment applications a 
frame rate of at least 20Hz is desired and is possible to 
achieve frame rates higher than 100Hz. It should be re-
garded that in this benchmark S-CD does not uses sur-
face knowledge and in this way the approach described 
in this paper does not use all its features to improve per-
formance.  
 

5. CONCLUSION 
This paper presents a novel collision detection algorithm 
that computes intersecting surfaces and triangles solving 
the narrow phase problem of the collision detection. 
It describes the use of R-trees and the OAABB for the 
implementation of an efficient method to find collisions 
in real time for virtual reality applications.  
The collision detection algorithm presented in this paper 
uses the overlapping axis-aligned bounding boxes to-
gether with an R-tree structure, to filter out bounding 
volumes of primitives that cannot intersect. Two primi-
tives intersect if the corresponding bounding volumes 
also intersect the OAABB. The traversal algorithm pre-
sented also reduces the number of node visits to one for 
object A, improving the overall performance and solving 
outlined problems of the traditional traversal scheme. 
The OAABB also contributes for the significant reduc-
tion of the number of bounding volume update opera-
tions.  
This paper also showed that the collision detection runs 
interactively. The S-CD toolkit is publicly available for 
download at http://w3.ualg.pt/~mfiguei. 
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