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Real-Time Game Physics Technical Addendum 
 

This document is a supplement to the real-time physics chapter in the 2
nd

 edition of 

Introduction to Game Development. The text below was adapted from the 1
st
 edition of 

the book. Here we include an extension of the discussion of theoretical and numerical 

physics to include generalized (but frictionless) rigid body motion. 

 

Note that equation numbers 1 through 19 (some of which are referenced here) are 

contained in the printed chapter. Equations 20 and higher are contained in this document. 

Figure numbers referenced in this document refer to figures located in this document, 

e.g., there are no references here to figures contained in the printed text. 

 

Generalized Translational Motion 
 

General Rigid Bodies vs. Spherical Particles 
 

We will now generalize our discussion to include arbitrary sized and shaped rigid bodies, 

rather than perfectly smooth spherical particles. There is exactly one reason for the 

smooth sphere restriction so far: we were able to completely avoid considering the issue 

of rotational motion. This is important: all of the equations presented previously are 

perfectly valid for rigid bodies of any shape that are of finite size. 

 

Despite the fact that the previous equations support arbitrarily shaped objects, they 

describe the translational physics of a single point on the object (e.g., the center of a 

sphere). Rigid body objects fill a volume in space, and so we must find an appropriate 

point on the object for use in a simulation. It is standard practice to choose the object’s 

center-of-mass to be the reference point for translational motion. The reason for this 

choice is that it removes inertial coupling that would otherwise make the translational 

equations dependent on rotation and the entire system more difficult to solve. 

 

Equation 20 defines the location of the center-of-mass for a rigid body. 

 

 
1

center of mass

Vol
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mass

   p r       (20) 

 

The density,  is the mass per unit volume, with units of type mass per the cube of 

distance. The SI units for density are kilograms per meter cubed (kg/m
3
). The variable, r, 

is the vector from a known reference point to the location of a differential element of the 

object’s mass. The resulting center-of-mass location is calculated relative to the same 

reference point. Note that density might be a constant, but in general it might also vary 

with the differential element position, r. For example, if you are computing the center-of-

mass of an object made partly of steel and partly of plastic, the integration over the 

plastic parts would use a different density from the integration over the steel parts. For 
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arbitrarily-shaped objects, Equation 20 can be difficult to evaluate. Brian Mirtich 

[Mirtich96] and David Eberly [Eberly03] have documented robust techniques for 

evaluating the center-of-mass of triangle mesh objects, which are extremely useful for 

game development. 

 

Figure 1 illustrates a rigid body and its center-of-mass, and shows the standard symbol 

for center-of-mass. For physics simulation, we normally choose a local object-aligned 

coordinate system with its origin located at the center-of-mass. This same local 

coordinate system can be used for collision detection and rendering, as well as physics 

simulation. 
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worldX

worldZ

objectX
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Figure 1. The center-of-mass of an object. 

 

We will now consider a variety of non-constant external forces that contribute to the 

generalized motion of an object. Any combination of these forces might be acting on an 

object at a given time. You can obtain the net force acting on an object, Fnet, by simply 

adding all applied forces together. Fnet is exactly the value of F to be used in the state 

derivative vector for numerical integration. If Fnet has zero magnitude, the object has zero 

acceleration and is said to be in translational equilibrium, though it may still be moving 

at a nonzero velocity. 

 

Linear Springs 
 

The first generalized force that we will consider is due to a spring connecting two objects. 

Figure 2 illustrates a spring that is connecting two objects. 

 

The spring is connected to one of the objects at location pe1, and to the other object at 

location pe2, the endpoints of the spring. The length of the spring is simply the Euclidian 

distance between the two endpoints. A spring has a so-called rest length, lrest, which 

defines the length of the spring when it is neither compressed nor stretched. The spring 

exerts zero force when its length is its rest length. When the spring is stretched to be 

longer than lrest, it applies an attraction force to each of the objects. When the spring is 

compressed to be shorter than lrest, it applies a repulsion force to each of the objects. 

Equation 21 presents the simplest realistic model of spring force, Hooke’s Law, in which 

the force is a linear function of the displacement from lrest. 
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  dF ˆ
restspring llk          (21) 

 

The variable, k, is the spring stiffness, a measure of the strength of the spring. The 

stiffness is measured in units of type force per unit length. The SI units for spring stiffness 

are Newton’s per meter. The variable, l, is the current length of the spring, and the vector 

variable, d̂ , is a unit length vector in the direction from pe1 to pe2. The spring force, 

Fspring, is applied to object 1 at location pe1. An equal but opposite force, - Fspring, is 

applied to object 2 at location pe2. 

 

k

re
stl

Rest Length,
Zero Force

Compression,
Repulsion Force

re
stl

l 
re

stl
l 

Expansion,
Attraction Force

e1p

e2p

F

-F

F

-F

 
Figure 2. The linear spring. 

 

Viscous Damping 
 

Viscous damping is a dissipative force (one that reduces kinetic energy) acting on objects 

moving at low speeds through fluids such as air, water, and oil. Mechanical damping 

devices called dashpots generate viscous damping forces, and are often utilized to reduce 

vibrations in machines, vehicle suspension systems, etc. Dashpots apply a damping force 

to the objects to which they are connected, as shown in Figure 3. 

 

The viscous damper applies forces along the damper axis. The magnitude of the forces is 

related to the relative velocity of the objects along the damper axis. Equation 22 defines 

the force. The parameter, c, is the damping coefficient, measured in units of type mass 

per unit time. The SI units for damping coefficient are kilograms per second. The 

parameter, d̂  is a unit vector in the direction from pe1 to pe2. 

 

   ddVVF ˆˆ ep1ep2damping c        (22) 

 

The damping force, Fdamping, is applied to object 1 at location pe1. An equal but opposite 

force, - Fdamping, is applied to object 2 at location pe2. 
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Figure 3. The dashpot damper. If objects approach each other along the line between the 

points where the damper is connected, the damping force is repulsive. 

 

Aerodynamic Drag 
 

An object traveling through a fluid, such as air or water, experiences a drag force that acts 

in the opposite of the object’s velocity through the fluid. Equation 23 provides a simple 

approximation for this aerodynamic drag. Here, CD is the drag coefficient, which has no 

units. Typical values for non-streamlined objects range from 0.1 to 0.4. The variable Sref 

is a representative front-projected area of the object. For game objects, other than aircraft, 

choose Sref to be the cross-section area of a bounding sphere for the object, and assume 

the drag force acts at the center-of-mass of the object. In Equation 23, the variable  is 

the mass density of the fluid through which the object is traveling. The reference, 

[Rhodes05], provides a comprehensive overview of aerodynamic forces. 
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Surface Friction 
 

When two objects make contact, either during a collision, while in resting contact, or 

during sliding contact, the objects potentially exert a force on each other within the 

contact plane. This tangential force is called friction. The behavior of the friction force is 

rather complex. Observe that if you apply a horizontal force to an object at rest on a 

surface, the object does not begin moving unless the force exceeds a threshold. Once the 

force exceeds the threshold, the object begins moving, often abruptly. When the object is 

moving, the force required to keep the object moving is less than the force required to 

cause the initial motion. This observation illustrates the presence of a variable static 

friction when the object is at rest, and a dynamic friction when the object is in motion. 

 

Coulomb developed the most common model of friction in the year 1781. You may be 

familiar with Coulomb friction from your prior studies. Using the Coulomb model, the 
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magnitude of static friction is equal to the component of an external force, Fapplied, applied 

between the objects in the contact plane up to a maximum magnitude of ns F , where s 

is a static friction coefficient, and Fn is the component of the applied force parallel to n̂ , 

given by  nFnF ˆˆ  appliedn . The magnitude of dynamic friction, generated when there is 

relative motion in the contact plane between the two objects, is given by nd F . Here, d 

is the dynamic friction coefficient. The friction coefficients are functions of the material 

properties of the two objects that are in contact. For example, the value of s between two 

objects made of wood ranges from around 0.2 to around 0.75. The value of d is usually 

smaller than s. The difference between the coefficients leads to a discontinuity in the 

magnitude of friction force at the moment the objects begin to slide past one another, and 

this discontinuity can cause a difficulty in numerical simulations. The friction coefficients 

have no units. 

 

There are three basic scenarios for two objects in contact with each other, shown in 

Figure 4. The following are the conventions used in the figure and equations to follow: 

Fapplied is the total force, less friction, applied by object 1 onto object 2; Vt is the 

tangential component of the relative velocity of object 1 moving past object 2; n̂  is the 

contact normal measured outward from object 2; the resulting friction force, Ffriction as 

calculated is applied on object 1, so that the net force on object 1 becomes Fnet=Fapplied + 

Ffriction. By Newton’s Third Law of Motion, -Ffriction is applied on object 2, so there is no 

need to calculate the friction force twice. The tangential relative velocity, Vt, is given by 

    nVVnVVV ˆˆ  2121t . 

 

An intuitive example of an external force, Fapplied, applied by one object onto another is 

simply the weight of an object resting on a horizontal surface. The resting object applies a 

force equal to its weight on the surface in the direction n̂ , and from Newton’s Third 

Law of Motion, the surface applies an equal but opposite force back on the object. If you 

exert an additional horizontal force on the object, attempting to slide the object, Fapplied 

would be the sum of the object’s weight plus the additional horizontal force. 

 

If Vt is zero, the friction force is given by Equation 24. Note that this equation guarantees 

that the magnitude of static friction never exceeds the Coulomb maximum of ns F . The 

tangential component of the applied force, Ft, is given by nappliedt FFF  . 

 

  tns

t

t
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F

F
F  , min        (24) 
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Figure 4. Friction acting on object 1 at a contact point for three scenarios. The force, 

Fapplied, is applied by object 1 onto object 2. 

 

If Vt is zero, and Ft exceeds Ffriction in magnitude, the objects will begin to accelerate 

tangentially past one another. For the case when Vt is nonzero, the friction force is given 

by Equation 25. Note here that nF ˆapplied  is always negative, and so friction acts in a 

direction opposite Vt. Friction is a dissipative force when the objects are in relative 

motion, and acts to reduce the kinetic energy of the two objects. 
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         (25) 

 

It is interesting to note that it is possible for dynamic friction to act in the same direction 

as the tangential applied force, rather than always against it. For example, consider a 

passenger train headed on a deadly course towards a bridge recently destroyed by a 

villain. Our hero has managed to set the brakes so that the wheels are no longer turning. 

Sliding, Coulomb friction acts to slow the train down. But friction is insufficient to stop 

the train in time. Our hero might tie one end of a chain to the train, then hold the other 

end of the chain while bracing herself against a building, or a perhaps a mountain. The 

force that the chain applies to the train acts opposite the train’s velocity, in the same 

direction as the friction force. Thus, the applied force and the friction force act in the 

same direction, both contributing to the deceleration of the train and saving of lives. 

 

Friction is a surprisingly difficult force to comprehend. You may find it useful to explore 

other technical documents related to implementing physics for games, such as the 

Essential Math tutorials mentioned in the printed text, other presentations on real-time 

physics presented at the Game Developer’s Conference (GDC), and published online at 

http://www.gamasutra.com. Archives of presentations from past GDC conferences can be 

found online at http://www.gdconf.com. 

 

A Simple Spring-Mass-Damper Soft-Body Dynamics System 
 

http://www.gamasutra.com/
http://www.gdconf.com/
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To understand better how you might go about using these various forces, consider a fun 

example. Using the results of this section and the prior section, you can construct a 

simple soft-body dynamics simulator. Simply create a polygon mesh with an interesting 

shape. You can create the mesh in code or using a digital content creation modeling 

package. For this system, you will use physics to update the position of the vertices of the 

mesh. For the physics system, create a particle at the location of each vertex of the mesh, 

and assign a mass to the particle. Then, create a spring and a damper between unique 

pairs of particles. The spring rest lengths should be equal to the initial distance between 

particles. Figure 5 illustrates this configuration, for a 2D model. The arrangement extends 

naturally to 3D. It is important that you include springs that connect particles on opposite 

sides of the mesh, to prevent the shape from collapsing; however, for complex meshes 

you don’t necessarily have to have springs between every unique pair. 

 

Geometric Mesh for Rendering Spring-Mass-Damper Physics Model

Each dashed line represents

1 spring + 1 damper

 
Figure 5. A simple soft-body model of a mesh, represented by a collection of particles 

connected by springs and dampers. 

 

As a way of experimenting with this type of simple soft-body model, consider the 

following pseudo-code, which initializes the object in midair, with an initial velocity of 

zero. The forces acting on the particles include gravity, as well as the spring and damper 

forces. 

 

Listing 8. A simple spring-mass-damper soft-body dynamics system. 

 
void main() 

{ 

N = number of particles; // # of verts in visual model 

Vector3D cur_S[2*N]; // S(t+delta_t) 

Vector3D prior_S[2*N]; // S(t) 

Vector3D S_derivs[2*N];  // dS/dt 

Vector3D g(0.0, 0.0, -9.81); // gravity 

float mass[N];           // mass of particles 

float k[N][N]; // spring constant between particles 

float lrest[N][N];  // spring rest lengths 
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float c[N][N]; // damper constant between particles 

float delta_t = 0.02; // physics time step, seconds 

float game_time;  // current game time, seconds 

float prev_game_time; // game time at previous frame 

float physics_lag_time=0.0; // time since last update 

Float init_height; // initial height above the ground 

 

// initialize the particles 

for (i = 0; i < N; i++) 

{ 

 mass[i] = 1.0f; // mass = 1 kg 

  

 // set initial linear momentum to be zero 

 cur_S[2*i] = Vector3D(0,0,0); 

 

 // assign initial position from visual model 

 cur_S[2*i+1] = position of model vertex i; 

 

 // update the initial position to reflect  

// init_height 

 cur_S[2*i+1].z += init_height; 

} 

 

// initialize a spring and damper between every pair 

// of particles. 

 

for (i = 0; i < N; i++) 

{ 

 for (j = 0; j < N; j++) 

 { 

  // configure the spring 

  k[i][j] = 10.0f;// stiffness = 10 N/m 

 

  // configure the damper 

  c[i][j] = 0.1f; // damping coef = 0.1 kg/s 

 

  // configure the rest length 

  lrest[i][j] = length of vector  

(cur_S[2*j+1] - 

 cur_S[2*i+1]); 

 } 

} 

 

// runtime loop, derived from Listing 6. 

while (main game loop) 
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{ 

     update game_time; 

     physics_lag_time += (game_time – prev_game_time); 

     while (physics_lag_time > delta_t) 

     { 

          DoPhysicsSimulationStep(delta_t); 

          physics_lag_time = physics_lag_time –  

delta_t; 

     } 

     prev_game_time = game_time; 

 

 // once physics has updated the particle 

// positions, we must transfer these to the  

// visual model for rendering. 

 for (i = 0; i < N; i++) 

 { 

  update visual model vertex i position to 

  be cur_S[2*i + 1]; 

 } 

 

 render the visual model; 

} 

} 

 

void DoPhysicsSimulationStep(delta_t) 

{ 

 See the listings in the printed text. 

 

 For better stability, modify the code to use  

velocity-less Verlet integration for the position  

updates and explicit Euler to update particle  

velocities. 

} 

 

Vector3D CalcForce(i) 

{ 

 Vector3D d, SForce, DForce, RelativeVel; 

 Vector3D Force_Net = 0.0f; 

 

 // Initialize the net force by calculating the 

 // force due to gravity, the particle’s weight. 

 Force_Net += mass[i] * g; 

  

 // compute the spring and damper forces 

 for (j = 0; j < N; j++) 
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 { 

  // compute unit vector from particle i 

  // to particle j, and the current length 

  // of the spring 

d = cur_S[2*j+1] - cur_S[2*i+1]; 

  length = d.Length(); 

 

d.Normalize(); // Make d unit length 

 

  // compute the spring force using equation 20. 

// i is attracted to j if the current length is  

// greater than the rest length, repelled from j  

// if the current length is less than rest length 

  SForce = k[i][j] * (length – lrest[i][j]) * d; 

 

  // compute the damping force. First we need the 

  // relative velocity 

  RelativeVel = (cur_S[2*j]/mass[j]) – 

(cur_S[2*i]/mass[i]); 

   

  // from here, we calc the damping force using 

  // equation 21. If object j is moving away from 

  // object i, the force on object j draws i 

  // towards j, otherwise the force repels i away 

  // from j. 

  DForce = c[i][j] * RelativeVel.DotProduct(d) * d; 

 

  // increment the net force 

  Force_Net += SForce; 

  Force_Net += DForce; 

 } 

 

 return(Force_Net); 

} 

 

Jeff Lander [Lander99] has created a simple demo program based on the approach 

outlined in the listing above. Jeff’s code is available for download on the Internet. 

Although imperfect, it is something you can use as a comparative example. Certainly, 

read Lander’s article to find out what lessons he learned. 

 

Rotational Motion 
 

The physics of rotational motion are analogous to the kinematics of particle or center-of-

mass translational motion. Torque, the analog of force, causes an angular acceleration. 
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Angular acceleration causes a change in angular velocity. Angular velocity causes a 

change in orientation, the rotational analog of position. We begin our analysis of 

rotational motion with Equation 26, the rotational analog to Equation 8. 

 

   )(tt
dt

d
τL           (26) 

 

Here, the vector (t) is the torque, sometimes called the moment, or moment of force. 

Torque is measured in units of type force times distance. The SI units for torque are 

Newton-meters. Torque is calculated at a point about which an object is expected to 

rotate, and is related to a force applied to the object. Torque is nonzero when the force 

acts along a line that does not intersect the point where torque is being calculated. 

Equation 27 gives the mathematical definition of torque, where r is the vector from the 

point about which torque is being calculated to the point where the force causing torque 

is being applied. From the Equation, note that torque has a direction that is perpendicular 

to the force vector and r.  

 

 Frτ           (27) 

 

Figure 6 illustrates the generation of torque about the center-of-mass of a rigid body, due 

to a force, F, applied at a point, P, on the body. Here, r is the vector from the center-of-

mass to the point P. 

 

r
F

P

= Center-of-Mass

 = r F

 
Figure 6. The relationship between force and torque. The arc arrow indicates that the 

torque due to F causes a counterclockwise rotation, e.g., a positive rotation about a vector 

pointing out of the page, the direction of the torque vector. 

 

Before continuing, let’s consider the effect of torque on an object. We would like the 

concept to be somewhat intuitive. The effect of torque is fairly intuitive when it acts on 

an object that initially is not rotating, and so we will consider that case here. Consider the 

classic children’s outdoor play toy, the seesaw. A seesaw in play rotates back-and-forth 

about the center fulcrum. If you approach a seesaw that is not in use, it will be resting, 

not rotating. When you sit on the end of the seesaw, your weight acts straight down near 



   

 12 

one end, and the vector r from the fulcrum to your body points in a generally horizontal 

direction. Your weight results in a torque about the center of the fulcrum that acts to one 

side, parallel to the ground and perpendicular to the seesaw and your weight vector. It 

happens that the torque applied is exactly parallel to the axis of rotation about the 

fulcrum. This, in a nutshell, is the effect of torque on an object that is not initially 

rotating: the torque causes the object to begin rotating about the torque axis. For objects 

that are rotating with fairly small angular velocities, the result is similar: large torques 

change the axis of rotation to be approximately the torque axis. Objects with large 

angular momentum exhibit behavior that is less intuitive, called gyroscopic precession, in 

response to an applied torque, and even respond in a non-intuitive fashion when no 

torque at all is being applied (torque-free precession). We will not discuss these high 

angular momentum behaviors here. 

 

If an object is moving freely in space, torque is calculated at the center-of-mass, and 

rotation is about the center-of-mass. If an object is constrained in some way, torque 

should be calculated about some other point that represents the possible axis of rotation. 

For example, if an object is constrained by a hinge, torque should be measured at a point 

along the hinge axis. In this chapter, we are only concerned with torque about the center-

of-mass. 

 

The vector, L(t), is called angular momentum, the rotational analog to linear momentum. 

Equation 28 states the mathematical definition of angular momentum. Angular 

momentum is measured in units of type mass times distance squared per unit time. The SI 

units for angular momentum are kilogram-meters-squared per second (kg-m
2
/s). 

 

 JωL           (28) 

 

The variable J is a symmetric 3x3 matrix called the inertia tensor, the analog of mass. 

The terms of the inertia tensor describe the distribution of mass throughout the volume of 

a rigid body. (J is represented by the variable I in many texts; however, we use J here to 

avoid confusion with the identity matrix.) Equation 29 defines the inertia tensor, which is 

measured in world coordinates. 
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The diagonal components of the inertia tensor are called moments of inertia, and the off-

diagonal elements are called products of inertia. The inertia tensor is measured in units 

of type mass times distance squared. The SI units for the inertia tensor are kilogram-

meters-squared (kg-m
2
). Equations 30 and 31 define the moments of inertia and products 

of inertia, respectively. Here, the variables rx, ry, and rz are the components of a vector r 

from the object’s center-of-mass to a differential element of mass in the object. 
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      
Vol

yxzz

Vol

zxyy
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zyxx dxdydzrrJdxdydzrrJdxdydzrrJ 222222   ;   ;   (30) 

 

 
Vol

zyyz

Vol

zxxz

Vol

yxxy dxdydzrrJdxdydzrrJdxdydzrrJ    ;   ;   (31) 

As with center-of-mass, for general-shaped objects these equations can be tedious to 

evaluate. Table 1 provides equations for the inertia tensor elements for a few simple 

shapes. The products of inertia for these objects are zero. The references [Mirtich96] and 

[Eberly03] provide methods for robustly evaluating the inertia tensor and center-of-mass 

for the arbitrary triangle meshes that are common to game development. 

 

For physics simulation, as presented herein, the inertia tensor must be represented in the 

inertial reference frame, or the game’s world coordinate system. If the object is rotating, 

the inertia tensor in this coordinate system will change as the object rotates. To avoid an 

expensive recomputation for every numerical integration step, it is best to compute the 

inertia tensor, and its inverse, J
-1

, in the object’s local coordinate system, and then 

transform that tensor into world space at every integration step using Equation 32. Note 

that the same transformation is applied to both the tensor and its inverse, where R is the 

3x3 object-to-world rotation matrix. 
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1  ;        (32) 

 

Table 1. Inertia tensor values and center-of-mass locations for primitive shapes with 

constant density. 
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The orientation of an object can be represented by either R  or by a unit quaternion, q. 

Each of these is an analog to position. The angular velocity of an object, 

zyx  ,,ω , measured in world space, is the analog of velocity. The direction of 

angular velocity is the parallel to the axis of the object’s rotation, and its magnitude is the 

rate of rotation. Angular velocity is measured in units of type angle per unit time 

(angle/time). The SI units for angular velocity are radians per second (rad/s). 

 

We can use equations 26 through 32 to perform the rotational portion of our numerical 

physics simulation. For a single rigid body, the state vector for explicit Euler integration, 

with both translational and rotational states included, can be iiiiii m RLpVS ,,, , or 

iiiiii qm ,,, LpVS   if you choose a unit quaternion to represent the object’s orientation 

state. The state derivative entries for miVi and pi are the same as for the no rotation case. 

The state derivative entry for L is given by Equation 26, e.g., it is the net torque, net, 

calculated as the sum of torques due to the applied forces in Equation 33. 

 






























 



frictioncontact

N

i

idmpdmp,i

N

i

ispringspring,inet

damperssprings

FrFrFrτ
1

,

1

,  (33) 

 

Equation 34 defines the value of the state derivative of R when the orientation state is 

represented as an object-to-world rotation matrix, and Equation 35 defines the state 

derivative of q when the orientation state is represented by a unit quaternion. Take care to 

note the special representation of the angular velocity as a quaternion with its real 

component equal to 0.0. 
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With the state vector and state derivative vector in place, you can use your favorite 

numerical integrator to solve for the updated state vector. 

 

There are two post-processing steps that you must perform to properly simulate rotation. 

First, since the state derivative of orientation, given by Equation 34 or 35, requires that 

we know the angular velocity, it is necessary to compute the angular velocity after the 

integration step, by solving Equation 28 for the angular velocity and transforming the 
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object space inertia tensor into world space using the second part of Equation 32. This 

step is given below as Equation 36. 
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Once the updated angular velocity is known, you will be able to prepare for the next 

integration step. 

 

Second, a correction step must be applied to R or q every few frames. When simulating 

rotation, R  is expected to be orthogonal and q is expected to be unit length. Floating 

point round off and truncation error will cause these to drift over time. Every few frames, 

you must ensure that R  is orthogonal by performing a Gram-Schmidt orthonormalization 

([Eberly04], [Golub96]) or perform a Euclidian normalization of q. 

 

The Simulation Loop with Support for Rigid Body Rotation 
 

As discussed above, the simulation loop for rigid body dynamics with rotational motion 

is somewhat more complex than pure translational motion. Listing 9 outlines the steps 

required to configure such a system, and illustrates the simulation loop without collision 

detection and response. As in prior code listings, comments within the code will clarify 

the process. Note that in practice collisions must be handled in a manner similar to 

Listing 5. 

 

Listing 9. Simulation Loop with Rotation 

 
void main() 

{ 

N = number of rigid bodies 

Matrix33 JObj[N]; // inertia tensors in object space 

Matrix33 JObjInv[N]; // inverse inertia tensors in  

// object space 

Matrix33 J;   // temporary inertia tensor 

     // in world space 

Float mass[N];   // rigid body masses 

Vector3D cur_S[3*N]; // velocity, position, and  

// angular momentum states 

Quaternion cur_q[N]; // orientation states as  

// quaternions 

Vector3D prior_S[3*N]; // prior vel, position,  

     // angular momentum states 

Quaternion prior_q[N]; // prior orientation state 

Vector3D S_derivs[3*N];  // dS/dt for vel, pos,  

// angular mom 

Quaternion q_derivs[N]; // dS/dt for orientation 
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Vector3D cur_w[N];  // current angular velocities 

matrix33 R;   // temporary rotation matrix 

int iCounter = 0;  // counter to tell us when to 

     // renormalize the   

     // orientation quaternion 

 

// initialize the rigid bodies 

for (i = 0; i < N; i++) 

{ 

 mass[i] = mass of rigid body i; 

 

 // The initial center-of-mass position and 

 // linear momentum are the same as the  

// translational only case. 

 cur_S[3*i] = initial linear momentum of i 

 cur_S[3*i+1] = initial position of i’s  

center-of-mass; 

 

 // The rotational state variables are dependent

 // on the inertia tensor, so we calculate that  

// here. 

 

 JObj[i] = compute inertia tensor of rigid body i, 

in the local object space of i; 

 

 // since we need it later, compute and store the 

 // inverse inertia tensors. 

 

 JObjInv[i] = JObj[i].Inverse(); 

 

 // Set the initial orientation of object i. This 

 // is a quaternion represented in world space. 

 

 cur_q[i] = current orientation as a unit  

quaternion; 

 

 // the initial angular velocity is here assumed 

 // to be zero, but it might be nonzero. 

 

 cur_w[i] = Vector3D(0,0,0); 

 

 // compute initial angular momentum given angular 

// velocity using equation 28 and 32. This 

// requires that we first compute a 3x3 rotation 

// matrix cur_q[i]. 



   

 17 

 

R = cur_q[i].ConvertToRotationMatrix(); 

 

// From here we can compute the initial world 

// space inertia tensor using Equation 32 

 

J = R * JObj[i] * R.Transpose(); 

 

// Now we can compute the initial angular 

// momentum using Equation 28. 

 cur_S[3*i+2] = J * cur_w[i]; 

} 

 

// Game simulation/rendering loop 

while (game simulation is running) 

{ 

     update game_time; 

 

 // update the physics 

     physics_lag_time += (game_time – prev_game_time); 

     while (physics_lag_time > delta_t) 

     { 

          DoPhysicsSimulationStep(delta_t); 

          physics_lag_time = physics_lag_time – 

delta_t; 

     } 

     prev_game_time = game_time; 

 

 // occasionally renormalize the orientation  

// quaternion 

 if (++iCounter == 5) 

 { 

  iCounter = 0; 

for (i = 0; i < N; i++) 

 cur_q[i].Normalize(); 

 } 

 

 // render the scene 

for (i = 0; i < N; i++) 

 Render rigid body i at position  

cur_S[3*i+1], 

and orientation cur_q[i]; 

} 

} 
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// Update the physics 

void DoPhysicsSimulationStep(delta_t) 

{ 

     copy cur_S to prior_S 

 copy cur_q to prior_q 

 

// temp_w is a temporary quaternion version of the 

// angular velocity, as shown in Equation 35. 

 Quaternion temp_w; 

 

     // calculate the state derivative vectors 

     for (i = 0; i < N; i++) 

     { 

  // state derivative for translational 

  // linear momentum and position are the 

  // same as for the non-rotation case 

          S_derivs[3*i] = CalcForce(i); 

          S_derivs[3*i+1] = prior_S[3*i] / mass[i]; 

 

  // state derivative for angular momentum 

  // is the net torque, given by Equations 

  // 26 and 33. 

  S_derivs[3*i+2] = CalcTorque(i); 

 

  // state derivative for the orientation 

  // is given by Equation 35. 

  temp_w.Set(0, cur_w[i].x, cur_w[i].y, 

     cur_w[i].z); 

 

  q_derivs[i] = 0.5 * temp_w * cur_q[i]; 

     } 

 

 // integrate the equations of motion. Vector 

 // states first. 

     ExplicitEuler(3*N, cur_S, prior_S, S_derivs, delta_t); 

 

 // Followed by the quaternion orientation state 

 ExplicitEuler(N, cur_q, prior_q, q_derivs, delta_t); 

 

 // We are not done yet. We have the updated state, but 

 // we need to compute the new angular velocity using 

 // Equation 36. We do this in a loop since it has to  

// be done for all objects 

 for (i = 0; i < N; i++) 

 { 
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  // We first need a rotation matrix for time 

  // t + delta_t. 

R = cur_q[i].ConvertToRotationMatrix(); 

 

// We next compute the inverse inertia tensor 

// in world space, which is used in Eq. 36. 

J = R * JObjInv[i] * R.Transpose(); 

 

// We are now in a position to update the 

// angular velocity using Equation 36. 

cur_w[i] = J * cur_S[3*i+2]; 

} 

 

// Now we’re done with the integration! 

 

 // By integrating the equations of motion, we have 

 // effectively moved simulation time forward by 

// delta_t. 

 t = t + delta_t; 

} 

 

A Brief Word About Integrators and Different State Variable Types 
 

If you look carefully at Listing 9, you will see that the call to ExplicitEuler looks 

identical regardless of whether or not the state vectors and derivatives contain Vector3D 

objects or Quaternion objects. And you may wonder how you can actually create a single 

integrator function that can integrate state variables that are of different types. There are a 

couple of ways to accomplish this. One approach is to flatten all state variables, e.g., 

vectors and quaternions, into an array of floating point values, and use an integrator that 

simply integrates an array of floating point state values. Another approach, using object-

oriented programming, is to derive all state variables from a base State class, and ensure 

that all concrete state classes overload the operators required by the integrator: -, +, and *. 

 

Let’s take a look at the first approach, in which the state variables are flattened to an 

array of floats. A Vector3D object can be represented as an array of 3 floats, and a 

Quaternion object can be represented as an array of 4 floats. Listing 10 shows how you 

might represent a collection of object states that follow this approach, along with the call 

to ExplicitEuler. The state variable vector includes mV, p, L, and q in a single floating 

point array. 

 

Listing 10. Object States Flattened Into an Array of Floating Point Values 

 
float cur_S[13*N];  // current state 

float prior_S[13*N]; // prior state 

float S_derivs[13*N]; // state derivatives 
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// for object i 

cur_S[13*i + 0] = linear momentum x component; 

cur_S[13*i + 1] = linear momentum y component; 

cur_S[13*i + 2] = linear momentum z component; 

cur_S[13*i + 3] = position x component; 

cur_S[13*i + 4] = position y component; 

cur_S[13*i + 5] = position z component; 

cur_S[13*i + 6] = angular momentum x component; 

cur_S[13*i + 7] = angular momentum y component; 

cur_S[13*i + 8] = angular momentum z component; 

cur_S[13*i + 9] = orientation real component; 

cur_S[13*i + 10] = orientation imaginary i component; 

cur_S[13*i + 11] = orientation imaginary j component; 

cur_S[13*i + 12] = orientation imaginary k component; 

 

prior_S[13*i + 0] through prior_S[13*i + 12] is similar; 

 

S_derivs[13*i + 0] = Net force x component; 

S_derivs[13*i + 1] = Net force y component; 

S_derivs[13*i + 2] = Net force z component; 

S_derivs[13*i + 3] = Velocity x component; 

S_derivs[13*i + 4] = Velocity y component; 

S_derivs[13*i + 5] = Velocity z component; 

S_derivs[13*i + 6] = Net torque x component; 

S_derivs[13*i + 7] = Net torque y component; 

S_derivs[13*i + 8] = Net torque z component; 

S_derivs[13*i + 9] = 0.0; 

S_derivs[13*i + 10] = angular velocity x component; 

S_derivs[13*i + 11] = angular velocity y component; 

S_derivs[13*i + 12] = angular velocity z component; 

 

// The following call integrates the vector values and 

// quaternion values all in one call 

ExplicitEuler(13*N, new_S, prior_S, S_derivs, delta_t); 

 

Using an object-oriented approach, the integrator parameters would be specified as arrays 

of a base object class type, then derive all state variable types from the base class. The 

base class in this case must define pure virtual functions for the basic mathematical 

operators -, +, and *, and the state variable classes must each provide concrete 

implementations of those operators. If you choose to use C++, and store the states in STL 

vectors, then the state variable classes will also need to provide assignment operators and 

copy constructors to make the STL container classes happy. Listing 11 shows example 

code in pseudo-C++. 
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Listing 11. Object-oriented State Classes and Integrator 

 
class State 

{ 

 const State &operator+(const State &Other) = 0; 

 const State &operator-(const State &Other) = 0; 

 const State &operator*(const State &Other) = 0; 

 const State &operator*(const float fFactor) = 0; 

 

}; 

 

class Vector3D : public State 

{ 

 const Vector3D &operator+(const Vector3D &Other); 

 const Vector3D &operator-(const Vector3D &Other); 

 const Vector3D &operator*(const Vector3D &Other); 

 const Vector3D &operator*(const float fFactor); 

 

 float m_fX, m_fY, m_fZ; // components of vector 

}; 

 
class Quaternion : public State 

{ 

 const Quaternion &operator+(const Quaternion &Other); 

 const Quaternion &operator-(const Quaternion &Other); 

 const Quaternion &operator*(const Quaternion &Other); 

 const Quaternion &operator*(const float fFactor); 

 

 float m_fR;   // real component 

 float m_fi, m_fj, m_fk; // imaginary components 

}; 

 

void main() 

{ 

 ArrayContainer<State> cur_S; 

 ArrayContainer<State> prior_S; 

 ArrayContainer<State> S_derivs; 

 for (i = 0; i < N; i++) 

 { 

  cur_S.Add(Vector3D(linear momentum of i)); 

  cur_S.Add(Vector3D(position of i)); 

  cur_S.Add(Vector3D(angular momentum of i)); 

  cur_S.Add(Quaternion(orientation of i)); 

 

  // prior_S and S_derivs follow similarly 
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 } 

 

 // in the simulation loop, just call the integrator 

 // by passing references to cur_S, prior_S, and  

// S_derivs. 

} 

 
void ExplicitEuler(ArrayContainer<State&> &new_S, 

const ArrayContainer<State&> &prior_S, 

const ArrayContainer<State&> &S_derivs, delta_t) 

{ 

 unsigned int N = new_S.size(); 

 for (i = 0; i < N; i++) 

 { 

  new_S[i] = prior_S[i] + delta_t * S_derivs[i]; 

} 

} 

 

There certainly are other ways in which you might build an object-oriented numerical 

simulator; however, one benefit of the approach shown in Listing 11 is that the numerical 

integrator method need only exist in one location in your source code. This makes the 

code fairly easy to maintain. 

 

Collision Response Revisited 
 

Now that we understand how to simulate the motion of objects undergoing rotational 

motion, it is worth revisiting impulse-momentum-based collision response. Figure 7 

illustrates a generalized, frictionless rigid body collision. Because there is no friction, the 

collision impulse acts through the point of impact in the direction of a unit normal vector 

at the point of impact. As shown in the figure, the line of action of the impulse does not 

necessarily intersect the centers-of-mass of the objects involved, resulting in an impulsive 

torque that changes the rotational motion state of the objects. 

 

The rotational analog to the linear impulse-momentum equation is the angular impulse-

momentum equation, given by Equation 37 for frictionless collisions between two 

objects. 

 

    nrLLnrLL ˆ      ;   ˆ
222111   ΛΛ      (37) 

 

To compute generalized frictionless collision response, we must solve Equations 9-12 

and 37 for the impulse. Equation 38 gives the resulting impulse value, which models both 

translational and rotational effects. The impulse vector is given by Equation 11. 
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To compute the post-collision linear and angular momentums, simply apply the impulse 

from Equations 38 and 11 to Equations 9, 10, and 37. Note that Equation 38, when 

substituted into Equation 11, simplifies to Equation 13 when the line joining the two 

centers-of-mass intersects the impact point and is parallel to the contact normal, since all 

the cross products in Equation 38 become zero. This is to be expected, since there is no 

impulsive torque in this case. 
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Figure 7. Generalized frictionless collision. 
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Bringing It All Together 
 

You now should have a good understanding of the major factors that cause and affect the 

motion of general rigid bodies, as well as a basic understanding of the numerical 

integration techniques that can be used to approximately solve for the motion of a 

collection of objects over time. Whether you are implementing simple spherical particle 

physics or general rigid body physics, your basic process is rather straightforward, as 

outlined below: 

 Choose a numerical integrator (or integrators), which will determine the state 

vector and the number of prior states you must track. 

 Choose a representation for the state vector, S, and derivative vector, dtdS  

and/or 
22 dtd S . 

 Choose a set of initial conditions for your rigid bodies, and assign these into S. 

 If your selected numerical integrator requires more than one prior state, use 

explicit Euler integration to initialize the entire set of prior states. Alternatively, 

initially set all prior states equal to the initial conditions. 
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 During the simulation for each physics step, if collisions are detected and you are 

using impulse-momentum-based collision response, resolve them using the 

instantaneous impulse-momentum equations and update the state properties for 

the objects involved before continuing with the general update of all objects. 

Alternatively, if you are using penalty-force-based collision response, compute 

the penalty force on objects involved in collisions based on current 

interpenetration depths at the time t, and add the penalty force to the net force 

applied to each object. Then, update all objects in one step, including those in 

collision. 

 During the simulation for each physics step: 

o Copy the current state S


 into a temporary state array to be given to the 

integrator as one of the prior states. Copy other prior states if necessary. 

o Calculate or copy the state derivative vector for each object. 

o Call the integrator(s) to update the state vector. 

o If simulating rotational motion, update the angular velocity every frame, 

and renormalize the orientation matrix and/or orientation quaternion every 

few frames. 
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